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1. Introduction

1.1. The objectives of Normaliz

The program Normaliz, version 2.11, is a tool for computimgltlilbert bases and enumerative
data of rational cones, and more generally, sets of lattgetp in rational polyhedra. The
mathematical background and the terminology of this maatalexplained in Appendix A.
For a thorough treatment of the mathematics involved we tefereader td [2] and [4]. The
terminology follows|[[2]. For algorithms of Normaliz se€ [§5], [6] and [7].

A rational cone or a rational polyhedron can be given by

(1) asystem of generatogsin a latticeZ";
(2) constraints: an (in)homogeneous linear system of epsaand inequalities.

Affine monoids can also be defined by generators and binoelations.

The Hilbert basis of a rational pointed co@ién R" is defined with respect to a lattitec Z":

it is the unique minimal system of generators of the mor@idL. In the case of polyhedra
Normaliz computes a system of generators of the set of éaftaints inP over the Hilbert
basis of the recession monoid.

The standard choice fdr is Z" itself, but for Normaliz this choice can be modified in two
ways:
(1) L can be chosen to be the sublatticeZ8fgenerated by;

(2) L can be chosen to be the lattice of solutions of an (in)homeges system of congru-
ences if the cone or the polyhedron is specified by equatiotisreequalities.

In particular, Normaliz solves combined systems of diopin@linear equations, inequalities

and congruences. Conversely, Normaliz computes a systewonstraints defining the cone

or polyhedron and the lattice for which the Hilbert basis apstem of generators have been
computed.

Normaliz has special input types for lattice polytopesi@spnted by their vertices) and mono-
mial ideals (represented by the exponent vectors of theieigors). Via the specification of
a grading, one can easily apply Normaliz also to rationajjoples.

The enumerative data computed by Normaliz depend on a gyadiithe monoid under con-
sideration (see Sectidn 8.6): if asked to do so, Normalizmaes the Hilbert series and the
Hilbert quasipolynomial of the monoid or set of lattice pisim a polyhedron. In polytopal ter-
minology: Normaliz computes Ehrhart series and quasipmtyials of rational polyhedra. Via
its offspring Nmzintegrate [8], Normaliz computes genieed Ehrhart series and Lebesgue
integrals of polynomials over rational polytopes.

The computations can be restricted in several ways, for pkata the support hyperplanes or
the lattice points of a rational polytope.
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1.2. Platforms and access from other systems

Executables for Normaliz are provided for Mac OS, Linux an8 M/indows. Normaliz is
written in C++, and should be compilable on every systemttlhata GCC compatible com-
piler. It uses the standard packages Boost and GMP (se®&&g).

Normaliz can be accessed from the following systems:

SINGULAR via the librarynormaliz. lib,
MACAULAY 2 via the packagBormaliz.m2,
CoCOA via an external library,

POLYMAKE (thanks to theeOLYMAKE team),

SAGE via an optional package by A. Novoseltsev.

The Singular and Macaulay 2 interfaces are contained in trenlliz distribution. At present,
their functionality is limited to Normaliz 2.10.

Furthermore, Normaliz is used by the B. Burton’s systeBGRIA.

1.3. Major changes relative to version 2.10

(1) Computation of (lattice points in possibly unboundedlypedra.

(2) Hilbert series of semiopen cones.

(3) Integral approximation for rational polytopes.

(4) Computation of lattice points in polytopes via the dugbaithm.

(5) Substantial improvement of computations with simpliciones of large determinant.
(6) Improved version of pyramid decomposition in Fourieotlzkin elimination.

1.4. Future extensions

(1) Redesign of input and output.

(2) Automatic choice of integer type.

(3) A programming interface (using the already existingdiy).
(4) Exploitation of symmetries.

(5) Access from further systems.

2. Getting started

Download

e the zip file with the Normaliz source, documentation, exasm@nd further platform
independent components, and
¢ the zip file containing the executable(s) for your system

from the Normaliz website
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and unzip both in the same directory of your choice. In it,r@ctoryNormaliz2.11 (called
Normaliz directory in the following) is created with seviesabdirectories. (Some versions of
the Windows executables may need the installation of amenlibrary; see our website.)

In the Normaliz directory open jNormaliz by clickinglormaliz.jar in the appropriate way.
(We assume that Java is installed on your machine.) In thenldliz file dialogue choose one
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Figure 1: jNormaliz

of the input files in the subdirectomxample, saysmall.in, and pres®un. In the console
window you can watch Normaliz at work. Finally inspect thepu window for the results.
The menus and dialogues of [Normaliz are self explanatany,ybu can also consult the
documentation 1] via the help menu.

If the executables prepared cannot be run on your system,ythie can compile Normaliz
yourself (see Sectidn 1L0).

Moreover, one can, and often will, run Normaliz from the coamu line. This is explained in
Sectior4.

If 64 bit integer precision is not sufficient, then one cantstwjNormaliz to infinite precision

(or use the optionB from the command line). Then Normaliz has no restrictiontherinteger

precision. See Sectidn 4.6. (The integer precision hasmptb do with the address width
(32 bit or 64 bit) of your operating system.)

3. The input file

The input file<project>.in consists of one or several matrices. Each matrix is builbas f
lows:

(1) The first line contains the number of rows
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(2) The second contains the number of columns
(3) The neximlines ofnintegers each contain the rows.

(4) The last line contains a single number or word specifyimgtype of input the matrix
presents.

The line structure is irrelevant for the interpretation loé input, and only meant as a sug-
gestion for a transparent structure of the file. The examipddsw are often typeset in two
columns. It should always be obvious how to read them prgperl

At the moment there are three major classes of input matmegselygeneratorsconstraints
andrelations

Generators and constraints themselves fall into two sabek

(1) homogeneoyslefining cones and lattices,
(2) inhomogeneouyslefining polyhedra and affine lattices.

Additional classes argradinganddehomogenization

Remark Normaliz 2.11 (in contrast to previous versions) allowsamogeneous input types.
While polytopes are defined by inhomogeneous data, onelysuahts to compute the cone
over the polytope, its Hilbert basis and the Ehrhart sefiégse computations requin@mo-
geneousnput types, and their application to polytopes is expldibelow. Also see Section
B.2.

Rules for the combination of input types:

(1) The order of the matrices does not matter.

(2) Matrices of the same type will be concatenated (and mast the same number of
columns).

(3) The three classes generators, constraints and redatiariude each other (at present),
with one exceptionexcluded_faces are allowed with homogeneous generators.

(4) There can be at most one type of generators.

(5) Homogeneous and inhomogeneous constraints can be ndigesbon as an inhomoge-
neous type is present, Normaliz treats the input as beirgalgeneous, transforming
the homogeneous types appropriately.

Exception: excluded_faces are forbidden in combination with inhomogeneous con-
straints for which they are replaced byrict_inequalities.

For each input type we specify two lattices: #Hmabient latticeA to which the input data refer
and theessential latticé€ C A with respect to which all data are computed.

In this section we assume that Normaliz is run in a computatiode in which the Hilbert
basis or the system of generators, respectively, is agtoathputed. (See Sectiéh 4 for com-
putation modes.)

3.1. Generators of cones and lattices

These generator types ainetegral_closure, normalization, polytope andrees_algebra.



3.1.1. Type integral_closure

The rows of amm x n matrix of this type represemh vectors in the ambient lattick = Z".
The essential lattic& is the smallest direct summand 4¥f that contains the vectors in the
matrix.

The vectors are considered as a system of genergtofsa coneC, and Normaliz computes
the Hilbert basis o€ with respect td& (or, equivalentlyZ").

The nomenclaturéntegral_closure is explained by the fact that the Hilbert basis generates
the integral closure of the monoil, ¢ in Z".

A simple example:

Input Hilbert basis
3 10

2 01

20

11

02

integral_closure

In this example, the three input vectors clearly generagtsitive orthanRi in R2, and the
two unit vectors clearly are the Hilbert basisif N Z2.

Example input filesrproj2.in, small.in.

3.1.2. Type normalization

The matrix is interpreted as as one of typeegral_closure, howeverE is chosen as the
sublattice ofZ" generated by .

The choice of the nam®rmalization indicates that Normaliz computes the normalization of
the monoidZ. ¥ . (The computation of such normalizations was the original @f Normaliz,
hence the name.)

We choose the same input vectors as above, but change thetyp@alization:

Input Hilbert basis
3 20

2 11

20 02

11

02

normalization

The cone has not changed, but the lattice fiais: now the sublattice df? of all (z;,2,) with
Z1+2=0 mod 2.

Example input filesrafa2416.in, A443.1in.



3.1.3. Type polytope

The rows of the matrix are interpreted as integral points lattice polytope inR", which is
their convex hull.

The coneC is the cone over the polytope, i.e. the cone with apex RTh! generated by the
vectors(x, 1) wherex represents a row of the input matrix. We want to computeghenart
monoid G Z"+1,

The latticeA is Z"+1, andE is the smallest direct summandAfcontaining the generators of
C.

Type polytope is only a variant of typentegral_closure. One obtains the same results as
in typeintegral_closure with the extended vectofs, 1) as input.

Example input filespolytop.in, FortuneCookie.in, 106.1in.

3.1.4. Rational polytopes

Normaliz has no special input type for rational polytopesoider to process them one uses
typeintegral_closure together with a grading. Suppose the polytope is given bijoes

Vi = (ri1,...,in), i=1....mrj Q.

Then we writev; with a common denominator:

Pi1 Pin
Vi=|(—,...,— |, Ppij,q% €%, q>0.
I (OIi Qi ) - i
The generator matrix is given by the rows
Vi = (Pity---5 Pin,Gi), 1=1,....m

We must add a grading since Normaliz cannot recognize itowitlnelp (unless all the;
are equal). The grading linear form has coordindtes..,0,1). Sed 3.6 below for general
information on gradings.

Let us look at a concrete example (containeddnional. in), the triangleP with vertices

In order to apply Normaliz to it one uses the following input:

3 1

3 3
112 0601
-1 -13 grading
1-24

integral_closure

The output will be discussedin 6.1.3.
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3.1.5. Type rees_algebra

In this type the input vectors are considered as exponembnrgeof the generators of a mono-
mial ideall in the polynomial ringK[Xg,...,Xn]. Normaliz computes the normalization of
the Rees algebra of the idda(see [4] for the notion of Rees algebra.) This is a monomial
subalgebra of the extended polynomial ri[X, . . ., X,, T] with an auxiliary variabl& . Nor-
maliz computes the exponent vectorgiti* of the system of generators. For an example, see
Sectior{ 6.

In type rees_algebra one hash = E = Z"1,
Example input file:rees. in.

3.1.6. Preparation of the generators

After the coordinate transformation to the lattiEeNormaliz divides each generator by the
greatest common divisor of its components. For examplegxtreme rays listed will always
be suchE-primitive vectors (re-transformed t where they may not be primitive).

If a grading is present, the generators will be sorted byekegrascending order. If no grading
is available, they will be sorted by their 1-norm in the lefit. Those of the same degree will
remain sorted as in the input file (or the result of a previamgutation).

This preparation is also performed if the generators résutt a system of constraints.

3.2. Homogeneous Constraints

Homogeneous inequalities, equations, and congruencesmdethe cone and the lattice are
calledhomogeneous constraintglatrices representing them are of tyegsations, inequa-
lities, signs, congruences andexcluded_faces.

In previous versionsnequalities were callechyperplanes. The name is still allowed, but
no longer recommended.

The numbers of columns must of course match: for the amtad¢tité A = Z" the matrices of
equations and inequalities must haveolumns, and matrices of congruences must imayé
columns. The essential lattié&is the smallest sublattice @f containing the solutions of the
combined systems of constraints.

If there is no matrix of inequalities, then it is assumed ti&t user wants to compute the
nonnegative solutions of the system represented by thdiegeand congruences.

3.2.1. Type inequalities (formerly hyperplanes)

Arow (&1,...,&n) of the input matrix of this type represents an inequality
éixg+--+é&nxn >0
for the vectorgx,...,x,) of R".
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Example:

Input Hilbert basis
2 0 -1

2 11

10

1-1

inequalities

Normaliz has computed the Hilbert basis of the cone definethéynequalities > 0 and
X1 — X2 > 0 with respect to the lattic&?.

Example input fileCondorcet. in.
Remark: In previous versions this type was calggerplanes, a name that can still be used.

3.2.2. Sign inequalities: signs

There is a shortcut for the input of inequalities> 0 orx; < 0. The input matrix of typeigns
has format Xx n and the entries of its single row are{r-1,0,1}:
—1 stands fox; <0,
1 stands fox; > 0,
0 indicates that the sign af is not restricted.

Example:

1

4
1-101
signs

In this example we require th&t, x4 > 0 andx, < 0.
Example input fileCondorcet.in

3.2.3. Polytopes by inequalities

Normaliz has no special input type for polytopes defined legualities since they can easily
be specified via typeénequalities. Suppose the polytope is given by inequalities

QitXy+--+anXn > B, i=1....m aij,[ € Z.
Then we homogenize the inequalities in the form
Qi1Xy + -+ - + AinXn — BiXny1 > 0,

and use typenequalities for them in connection with the gradini@,...,0,1).
The filepoly_ineq.in contains

12



3

3 1

2 73 3

-8 23 001
1-10 grading
hyperplanes

It reproduces the triangle that we have discussédinl3.1.4.

3.2.4. Type equations
Arow (&1,...,¢&n) of the input matrix of this type represents an equation
éixat- - +énXn =0

for the vectorgxy, ..., X,) of R".

Example:
Input Hilbert basis
1 201
3 021
11-2 111
equations

If the input file contains no further matrices, Normaliz hasnputed the Hilbert basis of the
subcone oRR? defined by the equation +x; — 2x3 = 0.

Example input filesax4.in, 5x5.in.

3.2.5. Type congruences

We consider the rows of a matrix of this type to have lengthl. Each row(&,...,é&n,C)
represents a congruence
{121+ +6&za=0 modc

for the element$zy,...,z) € Z".

Example:
Input Hilbert basis
1 20
3 11
112 02
congruences

13



If no other matrix is in the input file, then Normaliz computbe Hilbert basis of the positive
orthant intersected with the lattice of all integral vest(#,z) such thatz +z =0 mod 2
and the result is the same a$1in 3.1.2 above.

Example input file3x3magiceven.in

3.2.6. Type excluded_faces

This type is useful for the computation of Hilbert series@fgopen cones. It is interpreted as
follows:

(1) If used with input of typegeneratorsthe faces defined baxcluded_faces are simply
excluded. They doot restrict the cone.

(2) Otherwise=xcluded_faces has a twofold meaning: (a) they are additional inequalities
defining the cone; (b) the faces they define are excluded fineriitibert series compu-
tation.

The twofold interpretation in case (b) saves the user fraruging theexcluded_faces twice.

An example of type (a):

4 1

2 3

00 110

01 excluded_faces
11

10

polytope

defines the unit square &2, but (0,0) excluded from the Hilbert series computation (See
Sectiori 6.4 for the discussion of the output.)

An example that combinesccluded_faces with other constraints:

124

11111111111111111111111

signs

324
111111-17-1-12-1-1-111-1-11-111-1-11-1
11111111-12-11-1-1-1-1-1-1-1111-1-1-1
111111111-2-1-12111-1-1-1-1-1-1-1-1-1
excluded_faces

The semiopen cone described by this input is the intersedtiche positive orthant iiR%*
with 3 halfspaces that are defined by the linear forms givexesuded_faces, and the facets
defined by these linear forms are then excluded.

Note thatexcluded_faces only affect the Hilbert series. They are ignored for all otbem-
putations.

Example input fileSquareMinusVertex.in, CondParSemi.in.

14



3.2.7. The constraints combined

LetL be the sublattice di" that consists of the solutions of the system of congruenefsedi
by the input matrix of typeongruences. (L = Z" if there is no such matrix.) Moreover, At
be the matrix of typenequalities (combined with the matrix representing thigns) andB
be the matrix of typequations. Then the con€ is given by

C={xeR":Ax>0, Bx= 0},

and the Hilbert basis aZ N L is computed.
The ambient lattice\ is Z", and the essential latticels= L NRC.

If there is no matrix of typequations, then the system of equations is empty, satisfied by all
vectors ofR".

If the input is of type constraints and there are no expliogqualities contained in it, then
Normaliz adds th& x n unit matrix of inequalities to restrict all computations to the non-
negative orthant.

See Section 6.2.3 for an example combining tyges&tions andcongruences.
Example input file3x3magiceven.in.

3.3. Relations

Relations do not select a sublattice&for a subcone aR", but define a monoid as a quotient
of Z} modulo a system of congruences (in the semigroup sensel!).

The rows of the input matrix of this type are interpreted asegators of a subgroup c Z",
and Normaliz computes an affine monoid and its normaliza®axplained in Sectidn A.5.

SetG = Z"/U andL = G/torsionG). Then the ambient lattice s = Z', r = rankU, and the
essential lattice i&, realized as a sublattice &f. Normaliz computes the image @f} in L
and its normalization.

3.3.1. Type lattice_ideal

As an example we consider the binomixis<z — X22, X1 Xg4 — XoX3:

Input Hilbert basis
2 30

4 21

1-2 10 12

1-1-11 03
lattice_ideal

In this exampleZ* /U is torsionfree, but we can replace each of the vectors imgatimatrix
by a nonzero integral multiple without changing the result.

15



The typelattice_ideal cannot be combined with any other input type (exagfatding)—
such a combination would not make sense. (See Sdction 8168 use of a grading in this
case.)

Example input filellattice_ideal.in.

3.4. Generators of polyhedra
3.4.1. Type polyhedron

A matrix of type polyhedron contains both the generatorshef tecession con€ and (a
superset of) the vertices of the polyhedron. For a polyhedtdR" the vectors have + 1
entries inZ. The last component must be nonnegative. It is interpretddiws:

(1) Ifitis O, the vector is part of the system of generator€ of
(2) Ifitis a positive integer, it is considered as the denwator for the firsh entries, which
together define a (potential) vertex@in Q".

The order of the input vectors is irrelevant.

43
100
0610
322
232
polyhedron

defines the polyhedron
P=con\((3/2,1), (1,3/2)) +R?
in R?.
Presently there is no possibility to restrict the latticea polyhedronP ¢ R" is defined by

a matrix of typepolyhedron, then all lattice related computations will refer to thenstard
lattice Z". ThereforeA = E = Z" for this input type.

Example input filepolyhedron.in

Remark: For computations of (rational) polytopes (i.e.uhmed polyhedra) you almost al-
ways want to use the input typgslytope or integral_closure (in conjunction with a grad-
ing). We discuss this point in Sectibn B.2.

3.5. Inhomogeneous constraints

What has been said about homogeneous constraints holdsyanaly for inhomogeneous

ones. Note that we must accommodate a right hand side in iopeneous constraints, and
therefore inhomogeneous constraints are one componegardman their homogeneous coun-
terparts (with the exception @ftrict_inequalities andstrict_signs).

16



If there are no explicitinequalities in the input, then,rathe homogeneous case, itis assumed
that nonnegative solutions are to be computed.

The latticeE for the computation of the recession module is the sub&atifcsolutions of the
homogeneous constraints associated to the given inhoraogsronstraints. (So it is defined
even if the polyhedron is empty.) The affine lattice for thenpaoitation of lattice points in the
polyhedron is the set of solutions of the given system of tangs.

3.5.1. Type inhom_inequalities

We consider inequalities

é1Xg+ -+ énXn > 1, é,n €z,
rewritten as
X+ +énXn+(—n) >0
and then represented by the input vector

(El?"'?fn?_r’)'

2

3

10 -1

01 -2
inhom_inequalities

describes the polyhedron
P:{XGRZ:xlz 1% > 2}.

Remark: For computations of (rational) polytopes (i.e.utaed polyhedra) you almost al-
ways want to use the input typ@equalities. We discuss this pointin Sectign 8.2.

Example input fileSquareMinusVertexInhom.in, NonCMDivisor.in.
3.5.2. Type strict_inequalities

These are shortcuts for inequalities of type
Xat- +énXn > 1

2

2

10

01
strict_inequalities

describes the polyhedron
P={xeR%:x; > 1% >1}.

Example input fileCondorcetInt.in

17



3.5.3. Type strict_signs

The components of a (one rowed) matrix of this type are iméteal as follows:

—1 stands fox; < —1,
1 stands fox; > 1,
0 indicates tha; is not restricted.

1

3

1-11
strict_signs

represents the inequalities
XlZ]-? X2§_17 X3Zl-

Example input fileCondorcetInt.in.

3.5.4. Type inhom_equations

We consider equations
51X1+"'+Enxn:’7, Ei,r]EZ,

rewritten as
éixg 4 +énXn+(—n) =0

and then represented by the input vector

€15+, &n, 11

The input

2

4

123 -2
32-25
inhom_equations

represents the system

X1+ 2%Xp + 3X3 = 2,
3X1 + 2% — 2X3 = —5.

Example input fileInhomIneq.in.

18



3.5.5. Type inhom_congruences

We consider the rows of a matrix of typehom_congrueneces to have lengtm+ 2. Each row
(&1,...,én,—n,C) represents a congruence

&1z1+---+ézn=n modc

for the element$zy,...,z) € Z".

2

4

12 -37

22 -413
inhom_congrueneces

represents the system

Xx1+2 =3 (7),
2% +Xo =4 (13)

of simultaneous congruences.
Example file:ChineseRemainder.in.

3.5.6. Mixing homogeneous and inhomogeneous constraints

Homogeneous and inhomogeneous constraints can appea sare input file. Note that
there must be at least one inhomogeneous type in order toaitedio Normaliz that the input
is inhomogeneous.

The homogeneous constraints will simply be considered lasnmwgeneous constraints with
right hand side 0. An example:

2 1

4 3

0610 -1 100
001-1 inequalities
inhom_inequalities

defines the polyhedron
P={xeR3:x3>0,x2>1,x3>1}.

3.6. Grading

Z-valued grading can be specified in two ways:
(1) explicitly by including a grading in the input, or

19



(2) implicitly. In this case Normaliz checks whether the extreme integnaérators of the
monoid lie in an (affine) hyperplan® If so, then the (unique) primitivé-linear form
A that affords an equatioh(x) = b for A is used as the grading.

Note: In previous versions we uséatightas a synonym fodegree

A grading is explicitly specified by an>1 n matrix for cones embedded R, and its type is
fixed by the attributgrading, for example

1

2

32
grading

We have not assigned a numerical type to matrices (effégtiwectors) specifying the grading.
Normaliz checks whether all generators of the monoid hagitipe degree.

Before Normaliz can apply the degree, it must be restrictdti¢ effective latticéf. Even if
the entries of the grading vector are coprime, it often hapyleat all degrees of vectorslin
are divisible by a greatest common divigbr- 1. Thend is extracted from the degrees, and it
will appear asienominator in the output file.

Special rules apply to some input types that we explain irfidhewing.

3.6.1. polytope

Cones defined by lattice polytopes always have an implieidigng in which the lattice points
in the polytope have degree 1 (roughly speaking). Theref@s@ot possible to use an explicit
grading together with this input type.

If it should be necessary to apply a different grading, thea oonverts the input of type
polytope to integral_closure by appending to each row of the input matrix and adds the
grading to be used.

3.6.2. rees_algebra

Suppose that the rows of the input matrix specify vectorsmdthn. Then these are embedded
into R"*1, and therefore the grading must have 1 components. Example:

3 1

3 4

012 111 -1
202 grading
111

rees_algebra

Note that the Rees algebra has an implicit grading if and ordil the monomials have the
same total degree, sagy Then the grading vector chosen automaticalljdis..,1,—(g—1)).

20



3.6.3. lattice_ideal

In this case the unit vectors correspond to generators aintheoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectoreeniniput represent binomial
relations, and these must be homogeneous. In other wortls,nimnomials in a binomial
must have the same degree. This amounts to the conditioththaiput vectors have degree
0. Normaliz checks this condition. Example:

14
11-1-1
lattice_ideal

14
1212
grading

3.6.4. Inhomogeneous input

Recall that inhomogeneous data defining a polyhedrdikl'ihave lengtm+ 1 (or evern+ 2
in the case of inhomogeneous congruences). The gradingnassidegree to each of the
canonical basis elements 4%, and therefore has length

2 3
115
1-14

12
11
grading

inhom_inequalities

is an example of consistent input.

3.7. Dehomogenization

Inhomogeneous input for objectsRf' is homogenized by an additional coordinate and then
computed inR%t1, but with the additional conditiory.1 > 0, and then dehomogenizing all
results: the substitutioxy, 1 = 1 acts as thdehomogenizatigrand the inhomogeneous input
types implicitly choose this dehomogenization.

Like the grading, one can define the dehomogenization eitplas in the following example:

23 13
-110 100
-101 dehomogenization
inequalities
This input is equivalent to
2
3
10 -1
01 -1

inhom_inequalities

21



But the dehomogenization can be any linear f@msatisfying the conditiod(x) > 0 on the
cone that is truncated. (In combination with constrairtie, conditiond(x) > 0 is automati-
cally satisfied sincé is added to the constraints.)

Since inhomogeneous input defines a dehomogenizationaittylihe typedehomogenization
cannot be combined with any of the inhomogeneous input typesalso forbidden for

normalization, polytope, rees_algebra andlattice_ideal.

(Note thatpolytope defines its own homogenization via the grading by the lastdinate.)

The input typedehomogenization makes the computation inhomogeneous, resulting in inho-
mogeneous output. The polyhedron computed is the intéoseaftthe coneC (and the lattice

L) defined by the remaining components of the input with theshgiane given by (x) = 1,

and the recession cone@sY {x: (x) = 0}.

A potential application is the adaptation of other inputfiats like that of polymake to Nor-
maliz. For example, if the first coordinate is used as the lgmnizing variable, then the
system of inequalities above is given as

2 1

3 3

-110 100

-101 dehomogenization
inequalities

Example input file:dehomogenization.in

3.8. Pointedness

For Hilbert basis computations and triangulations Normedquires the (recession) cone to
be pointedX, —x € C = x=0). Whenever the condition of pointedness is violated a¢p st
where it is crucial, Normaliz will stop computations.

Pointedness is checked by testing whether the dual co@asfull dimensional, and if not,
then the constructor of the cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in
the constructor of the object Full_Cone. Probable reason: Cone
not full dimensional(<=> dual cone not pointed)!

3.9. The zero cone

The zero cone with an empty Hilbert basis is a legitimate aldfm Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.
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3.10. Additional input file for NmziIntegrate

Nmzintegrate, whether called by Normaliz or from the comdhéine, needs an input file
<project>.pnm that contains the polynomial for which the generalized Bhrkeries or the
integral is to be computed. See [8].

3.11. Number codes for input types

For historical reasons some of the input types can be repiexsby numbers instead of names.
We strongly advise the user to avoid them now despite thgtdae still be used. These codes
are

> integral closure
: nomalization

. polytope

0

1

2

3. rees_algebra
4: inequalties (Or hyperplanes)
5: equations

6. congruences

10: lattice_ideal

4. Running Normaliz

The simplest way to call Normaliz from the command line is
normaliz <project>

for example
normaliz rafa2416

The project name isafa2416. Normaliz reads the input fileafa2416 . in (hopefully existing),
computes everything it can compute, and writes the outptite2416.out. (We assume that
the executableormaliz or normaliz.exe is in the search path. Otherwise you have to prefix
it with a suitable relative or absolute path.)

In the following we explain the various options of Normalihe full text names given appear
in the help screen as well as in the menus of j[Normaliz whitdwel you to choose options
interactively.

In the default computation mode Normaliz will try to compute all data accessible to it,
using the triangulation basedprimal algorithm. All options that can be activated are
switched off by default.
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The default mode is broken by any option that asks for a spemiinputation. These are all
except

4.1.

ceBfax.

Full syntax and basic rules

The full syntax for calling Normaliz from the command line is

normaliz [-sN1lvq] [-nph] [-dr] [-tTy] [-ceB] [-fa] [-ELI] [-x=<T>] [<project>]

where the options anebroject> are optional.
A help screen can be displayed txyrmaliz -?.

Basic rules for the use of options:

1.
2.

If no<project> is given, the program will ask you for it or display a help sare

The option-x differs from the other onexT> represents a positive number assigned to
-x; see Section 415.

Normaliz will look for<project>.in as input file.

If you inadvertently typedafa2416.in as the project name, then Normaliz will first

look for rafa2416.in.in as the input file. If this file doesn’t existafa2416.1in will be
loaded.

. Adding a pure output option, namely or -a, or an option controlling execution does

not change the computation mode. In particular, it does hanhge the default compu-
tation mode.

The options can be given in arbitrary order. All optiors accumulated, and there is no
mutual exclusion.

However, not all options are allowed for inhomogeneopsimata; see Sectién 4.3.

If Normaliz cannot perform a computation explicitly adier by the user, it will termi-
nate. Typically this happens if no grading is given althougé necessary.

In the default mode Normaliz does not complain about mgsdata (anymore). It will
simply omit those computations that are impossible.

If a certain type of computation is not asked for explycitiut can painlessly be produced
as a side effect, Normaliz will compute it. For example, asnsas a grading is present
and the Hilbert basis is computed, the degree 1 elements éfithert basis are selected
from it.

For example, if you input the command

normaliz -c -p -a rafa2416 -T -y or normaliz -cpaTy rafa2416
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then the program will take the fileafa2416.1in as input, control data will be displayed on
your terminal, the support hyperplanes, the triangulatiba multiplicity, the Hilbert series

and the Hilbert (quasi)polynomial will be computed and b# possible output files will be

produced.

4.2. Computation modes: homogeneous input
4.2.1. Basic modes

The least that Normaliz can do is

-s support hyperplanes: only the constraints of the cone and the lattice under censi
ation and the extreme rays are computed.

All computation modes includes.
For Hilbert basis computations one uses
-N Hilbert basis: computes the Hilbert basis.
The degree 1 elements of the Hilbert basis are computed by
-1 degree 1 elements: only degree 1 elements are computed.
Enumerative data are chosen by

-v volume: Normaliz computes the multiplicity (or normalized volujne
-g Hilbert series.

Remarks: (1) The Hilbert basis can also be computed by thieatly@ithm; see Sectidn 4.2.3.
In the presence of a gradingy includes the computation of the degree 1 elements.

(2) For degree 1 elements the dual algorithm can be appliecebhs Moreover, the approxi-
mation of rational polytopes is available for this purpasee Sectioh 4.2.4.

(3) The options 1vq require the presence of a grading (implicit or explicit).

(4) -N and-1 only need a partial triangulation, whereas the optionsrequire a full triangu-
lation.

4.2.2. Combined modes

For convenience, Normaliz provides shortcut modes thaboogrbasic modes:

-n Hilbert basis volume: combines-N and-v;
-p Hilbert series degree 1 elements.This mode combinesg and-1;
-h Hilbert basis series: combines-N and-q. This computation mode yields the maxi-
mum information Normaliz can produce.
Remarks: (1) There is no mode combiningand-1. Simply use-v1.

(2) The effect of-h is also reached by the default mode. Howevewyill result in termination
if a grading cannot be found.
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4.2.3. The dual algorithm

If a cone is defined by constraints, it is often (but not alWdgster to use a Hilbert basis
algorithm originally due to Pottier [11] that we call tdaalalgorithm, in contrast to the primal
(triangulation based) algorithm of Normaliz. (Sée [5] farr wersion of the dual algorithm.)
The dual algorithm is invoked by

-d dual Hilbert basis: computes the Hilbert basis using the dual algorithm;
-d1 dual degree 1: computes only the degree 1 elements.

Remarks: (1) The dual algorithm can be used with all inpuesypSee Section 8.5 for a
comparison of performance on various examples.

(2) -d1 is optimized for the computation of degree 1 elements.

(3) The dual algorithm can be combined with the primal algpon. For example;d1v or -dq
make perfect sense, and are often useful.

(4) If -d is set, the dual algorithm has priority in the computatiorHdbert bases, but not
necessarily in the computation of degree 1 elements. Fongbea-d1q will bypass the dual
algorithm, since the degree 1 elements can be gotten as adugtrof-q.

4.2.4. Approximation of rational polytopes

Even the computation of degree 1 elements can be an extreiiffedylt problem in the primal
as well as in the dual approach. A major obstruction in thengkialgorithm is the occurrence
of gigantic determinants of the simplicial cones in thertgalation. In this case the approxi-
mation of a rational polytope by a lattice polytope offersaweut:

-r approximate rat polytope: computes the lattice points in the degree 1 cross-section
by approximation.

It makes no sense to combine with the computation of a Hilbert basis or Hilbert series or
with the dual mode. In such case is bypassed. Howeveryv makes sense.

4.2.5. What option do | use ...
The following table gives an overview of the computationiops introduced so far.

No enumera- Hilbert
tive data | multiplicity | series

only extreme

rays -s -v -q
degree 1 -1 -vl

elements -d1, -r -dlv, -rv -p
Hilbert -d -dv default,
basis -N -n -h, -dq
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4.2.6. Modes calling NmziIntegrate

Nmzintegrate is an independent executable, but it can lbedday Normaliz. The options are
exactly those that would be used for a command line call of Mtegrate:

-E Generalized Ehrhart series: computation of generalized Ehrhart series,

-L Leading coefficient: computation of leading coefficient of generalized Ehrhadsi-
polynomial,

-1 Integral: computation of Lebesgue integrals.

See [8] for the details of Nmzintegrate. The optionsand -x=<T> are forwarded to NmzIn-
tegrate.

The option-E contains-y, and-I and-L both contain-T. See Section 4.2.7 forr and-y.
Note: the optionF of Nmzintegrate cannot be accessed via Normaliz.

4.2.7. Triangulation and Stanley decomposition

In some applications it may be useful to base further contjmuns on the triangulation or
even the Stanley decomposition computed by Normaliz. Asadly mentioned, Nmzintegrate
needs these data:

-T computes the triangulation and writes it to the fifgroject>. tri.
-y computes the Stanley decomposition and writes it to the:fiteject>.dec.

Both modes generate further output files, namelyoject.>inv and<project>.tgn. The
format of these files will be explained in Sectidn 7.

There is a further mode computing the triangulation, butipoing no output:
-t Computes the triangulation.
Why this option is sometimes useful will be explained in 88dB.6.

4.3. Computation modes: inhomogeneous input
The following options ar@ot allowedfor inhomogeneous input:
1prTyELI

The other modes are completely analogous to those for cohes wne replaces “Hilbert
basis” by “system of generators and Hilbert basis of reoessionoid” (see Section _A.6).
Whether Normaliz computes a cone or a polyhedron does omigrakon the input file and
not on the command line options. In order to keep jNormafhzse, the same full text names
of the options are used for polyhedra.
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4.3.1. Basic modes
-s support hyperplanes: only the constraints of the polyhedron and its verticescara-
puted.
All computation modes includes.

-N Hilbert basis: computes the system of generators, namely the Hilbers kasihe
recession cone and the minimal system of module generators.

-v volume: Normaliz computes the multiplicity.

-q Hilbert series: what it says.

Remarks: (1) Systems of generators can also be computee lpigh algorithm; see Section
4.2.3.

(2) The options vq require the presence of a grading.
(3) -N only needs a partial triangulation, whereas the optiamagrequire a full triangulation.

4.3.2. Combination modes

-n Hilbert basis volume: combines-N and-v;
-h Hilbert basis series: combines-N and-g. This computation mode yields the maxi-
mum information Normaliz can produce.

The effect of-h is also reached by the default mode. Howevewill result in termination if
a grading cannot be found.

4.3.3. The dual algorithm

-d dual Hilbert basis: computes the system of generators using the dual algarithm

4.3.4. What option do | use ...

The following table gives an overview of the computationiops introduced so far.

No enumera- Hilbert
tive data | multiplicity | series

only vertices -s -v -q
Hilbert -d -dv default,
basis -N -n -h, -dq

4.4. Control of output files

In the default setting Normaliz writes only the output #eroject>.out (and the files pro-
duced by-T and-y). The amount of output files can be increased as follows:
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-f Normaliz writes the additional output files with suffixgs, cst, andinv, provided the
data of these files have been computed.
-a includes-f, Normaliz writes all available output files except the tgafation or the
Stanley decomposition.
In order to see all available output files one usa®y.

The triangulation and the Stanley decomposition are tdesgparately since they can become
very large and may exhaust memory if they must be stored fioubu

For the list of potential output files and their interpretatsee Sectionl 7.

4.5. Control of execution

The options that control the execution are:
-c activates the verbose (“console”) behavior of Normaliz el Normaliz writes addi-
tional information about its current activities to the stard output.
-e activates the overflow error check of Normaliz. Ignored gdisvith -B.
-B switches Normaliz to infinite precision.
-x=<T> Here<T> stands for a positive integer limiting the number of thretdudd Normaliz is
allowed access on your system. The default value is set byglreting system. If you
want to run Normaliz in a strictly serial mode, choose1l.

The number of threads can also be controlled by the envirahwagiableOMP_NUM_THREADS.
See Section 815 for further discussion.

4.6. Numerical limitations

Evenin low dimensions, the range of 64 bit integers may naubicient for the computations
of Normaliz. Thereforeormaliz can be switched to infinite precision by the optian

Computations with B typically run about 5 times slower than those without it. kamples
that look critical, it may be useful first to tmyormaliz without -B, but with the error check
option activated. This costs time, too, but hardly more thd¥ extra.

The user should run the exampleitical64. in in the subdirectorgxamples with normaliz
-ein order to see the failure of 64 bit arithmetic. (Runningiitrw: B takes a while and requires
much memory.)

4.7. Obsolete options

The options-i and-m of version 2.2 have become obsolete. They will be ignoredaent.

The options-SVHP of versions 2.5 and 2.7 are now synonymous withhp and can still be
used.
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5. The output file

The data you will find in the output fileproject>.out depend on the input type and on the
computation mode. The output file starts with an “abstrauatit tollects various numerical
and qualitative data, for example the number of elementienHilbert basis. The lists of
vectors, equations etc. follow the abstract.

Note that the values of results computed by Normaliz deperyl @n the input file, except
that the order of vectors in lists like the Hilbert basis camnyy for example because of the
unpredictability of the parallelization. The command lipgrameters only determine which
results are computed and what algorithm is used.

5.1. The homogeneous case

The output file will contain the following data as far as corngal

only for typelattice_ideal: the original system of generators (see below);

the Hilbert basisH computed;

the extreme rays of the cokgenerated by;

the rank of the latticé;

the embedding dimension (the rank/f;

the index of the lattice generated by the original input oecinE;

the support hyperplanes Gf

a system of equations defining the vector space generat€d by

a system of congruences definiigas a sublattice of (together with the equations);
the number of simplicial cones in the triangulation and tine ®f the absolute values
of their determinants.

In the presence of a grading the following extra data may lrequt:

¢ the linear form defining the degree;

the degree 1 elements of the Hilbert basis;

the multiplicity;

the Hilbert series and the coefficients of the Hilbert (quadynomial;
the excluded faces (if any).

The degrees of the extreme rays are listed in the abstra¢he vhole Hilbert basis is of
degree 1, this fact is indicated. Moreover, Normaliz tetisl yhether the original system of
generators contains the Hilbert basis by indicating whretthe original monoid is integrally
closed.

Please note:

(1) The equations and support hyperplategetherdefine the con&C. While support
hyperplanes will always be present (except for the zero }carpiations will only be
printed if necessary, namely when diwc rankA.
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Similarly, congruences will only be printed if the lattiEas not given byRCN A. This
can only happen with input matrices of types-malization Or congruences.

Even if the cone and the lattice are defined by constrainésijrqualities, equations
and congruences of the input will in general not be reprodubet replaced by an
equivalent system.

(2) The extreme rays are given by the first point&ion them (the extreme integral gener-
ators with respect t@).

(3) In order to lift the grading froni to A it may be necessary to replace it by a multiple (in
order to avoid fractions as coefficients). The necessatgfappears as “denominator”.
The Hilbert series and the Hilbert (quasi)polynomial doaja/refer to the degree i

(4) Input matrices of typgeneratorscontain an explicit system of generators. For the other
types different froniattice_ideal the extreme rays computed by Normaliz take their
place. For typeattice ideal Normaliz first computes the monoM generated by
the residue classes of the canonical basiZb{compare Sectioh_3.3), and they are
considered as the original system of generators.

In type rees_algebra, the data in the output file refer to the integral closéfef the Rees
algebra. In addition to what has been mentioned alreadyptlosving data are computed:

e the generators of the integral closure of the ideal;
e if the ideal is primary to the irrelevant maximal ideal, theltiplicity of the ideal (not
to be confused with the multiplicity of the monoid).

5.2. The inhomogeneous case

Note: All data are presented inomogenized coordinates-or inhomogeneous input types
with implicit dehomogenization this means that all vectweith last component 0 belong to the
recession cone, and those with last compone@tepresent a rational point in the polyhedron
with denominator given by the last coordinate. In constsdine last coordinate represents the
negative of the right hand side, as in the input.

If the dehomogenization is another coordinate, the inetgpion is analogous. If the deho-
mogenizationd is not a coordinate, one must compute it by applying the tting linear
form to the vectors given: the denominato®i&) for the points of the polyhedron. Solving
the linear equatiod(x) = 1 for one coordinate and substituting the result into thestramts,
one obtains inhomogeneous versions of the constrainteyfshould be needed.

In the inhomogeneous case we compute a polyheBrowe can find the following lists of
vectors in the output file describing the solution monoid:

¢ the dehomogenization,
e the generators of the solution module,
¢ the Hilbert basis of the solution module.

The convex-geometric data of the polyhedron are given by:

e the vertices of the polyhedron (with denominadgk)),
e the extreme rays of the recession cone.

31



The support hyperplanes, equations and congruences lesartie meaning as in the homo-
geneous case: they describe the polyhedron and the afftiee laith respect to which the
solution monoid is computed.

The module rank and the rank of the recession monoid are ala@ayputed, as well as the
affine dimension of the polyhedrdh

If a grading is given, then one can also compute

e the multiplicity of the solution monoid (the suitably northkeading coefficient of the
Hilbert (quasi)polynomial),

¢ the Hilbert series given as a rational function with numarand denominator as in the
homogeneous case, however modified by

e a shift, and

¢ the Hilbert (quasi)polynomial, provided the period is rmt targe.

The shift corrects the Hilbert series as follows:

Htrue(t) - tishiftHcompute({t) .

The Hilbert (quasi)polynomial must be shifted correspogtli:
true(K) = Acomputed K+ Shift).

At the end we find the system of constraints that defines thghpdronP and the set of lattice
points in it.

The remarks in the homogeneous case apply accordingly.

6. Examples

Note that the output you get by running the examples mayrdiften the one given below in
the order of the vectors in lists like the Hilbert basis.

6.1. Generators of cones and lattices

6.1.1. Type integral_closure

The filerproj2.in contains the following:

16 7

1000000 0000100 1010101 0101101

01060000 0000010 106001011 0100111

0010000 1110001 1000111 0011101

0001000 1101001 0110011 00611011
integral_closure
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This means that we wish to compute the cGngenerated by the 16 vectors
(1,0,0,0,0,0,0), (0,1,0,0,0,0,0), ..., (0,0,1,1,0,1,1)

in R with respect to the full lattic’, as indicated by the typtegral_closure. (Actually,
the vectors generate the full lattice so that a replacenfetype integral_closure by type
normalization would not change anything.)

Runningnormaliz with no option (or option-h, Hilbert basis series) produces the file
rproj2.out which has the following content (partially typeset in 2 orduwmns):

17 Hilbert basis elements multiplicity = 72
16 Hilbert basis elements of degree 1
16 extreme rays Hilbert series:
24 support hyperplanes 1931256
denominator with 7 factors:
embedding dimension = 7 1: 7
rank = 7 (maximal)
index =1 Hilbert polynomial:
original monoid is not integrally closed 60 194 284 245 130 41 6
with common denominator = 60
size of triangulation = 67
resulting sum of |det|s = 72

grading:
111111-2

degrees of extreme rays:
1: 16

Hilbert basis elements are not of degree 1

3K 5K 3K 5K 3K 5K 3K 5K 3K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K 5k 3K K 3K K 3K K 5k 3K 3k koK >k 5k >k Sk K 5k >k 5k 3K K 3K K ok >k ok K ok K ok >k ok kok Kk >k koK kok ke

17 Hilbert basis elements: 24 support hyperplanes:
06000010 © 6 61 0 0 0
0000100 © 6 6 061 0 0
0001000 © 6 6 0 0 1 0
0010000 © 6 6 060 0 0 1
001106011 © 61 0 0 06 0
00611101 © 1 06 06 0 06 0
01060000 6 1 10 0 1-1
0100111 0 1 6 6 1 1-1
0101101 6 1 06 1 1 0-1
0110011 0 61 1 06 1-1
1000000 6 1 1 1 1 1-2
1000111 0 6 1 1 1 0-1
1001011 1 0 6 6 6 0 0
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1010101 1111 1 1-3
1101001 1 06 6 6 1 1-1
1110001 1 6 61 6 1-1
1111112 1 6 1 6 1 0-1
1 06 1 1 1 1-2
16 extreme rays: 1 11 06 0 0-1
1000000 1 1 11 0 1-2
0100000 11 6 1 6 0-1
0010000 1 1 1 0 1 1-2
0001000 1 1 1 1 1 0-2
0000100 11 6 1 1 1-2
0000010
1110001 16 degree 1 Hilbert basis elements:
1101001 0000010
1010101 0000100
106001011 0001000 0110011
1000111 0010000 1000000
0110011 00611011 1000111
0101101 00611101 1001011
01060111 0100000 1010101
00611101 0100111 1101001
060611011 0101101 1110001

From this, we see that there are 17 elements in the Hilbers,bafswhich 16 are of degree
1, and 16 extreme rays, that the sublattice generated byipu vectors has index 1 i,
and that the corresponding support hyperplanes are givérebdynear formg0,0,0,1,0,0,0),
(0,0,0,0,1,0,0),...,(1,1,0,1,1,1,—-2).

We are also given the information that there is a grading ri@dfimplicitly) and what it is.
The multiplicity with respect to this grading is 72. By defian, the multiplicity is thelE-
normalized volume of the polytope obtained by intersectivegcone with the hyperplane at
degree 1.

The degrees of the extreme rays are given in multiset notatio
1: 16

indicates that 16 extreme rays have degree 1. (The inputiiiams no explicit grading. The
implicitly defined grading requires that all extreme rayséthe same degree, but it need not
be 1 as in this case.)

Since there is a grading, the degree 1 elements of the Hitlaeis, the Hilbert series and
Hilbert polynomial of the monoid generated by the Hilbersigaare also computed. The
Hilbert series is given as a rational function. Its numearatdynomial is

1+ 9t + 31t% + 253 + 6t*

as we can see from the vector below the headirigpert series. The denominator is given
in multiset notation1: 7 specifies the denominator

(1—thH7
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More general cases will be discusse@in 6.1.3[and]6.2.3 below
The Hilbert polynomial is given by

60 194 284 245 130 41 6
_ k2 + 3 K*4+ Ko+ —KS.

~50 60" 60" "60° "B0" T80 60

P(k)

The Hilbert polynomial gives the number of elements of dedgestarting from degree 0, as
is always the case for normal monoids. Note that the mutiiglim can also be read from the
leading coefficient of the Hilbert polynomial:

c= r =ran 1
= k 1)
in our case
. 1 72
10 720
The lines

size of triangulation = 67
resulting sum of |det|s = 72

give some information about Normaliz’ (not so hard) workpibduced a triangulation of 67
simplicial cones, and the sum of the absolute values of thermiénants of their generator
matrices is 72. It is not surprising that this number equadsnultiplicity. This is always the
case if only degree 1 vectors appear in the generator matrix.

We omit an example of typeormalization since it does not add anything new.

6.1.2. Type polytope

The filepolytop.incontains

00
00
30
05
polytope

© O N O W b~

The Ehrhart monoid of the integral polytope with the 4 vesic
(0,0,0), (2,0,0), (0,3,00 and (0,0,5)

in R3 is to be computed. (Note the last line, indicating the pggttype.)
Runningnormaliz without an option (or optionh) produces the filolytop.out:
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19 Hilbert basis elements

4 extreme rays
4 support hyperplanes

embedding dimension = 4
rank = 4 (maximal)
index = 30

size of triangulation
resulting sum of |det|s

grading:
0001

degrees of extreme rays:
1: 4

19 Hilbert basis elements:
0051
0301
1021
1101
1242

4 extreme rays:
0001
2001
0301
0051

original monoid is not integrally closed

30

multiplicity = 30

18 Hilbert basis elements of degree 1

Hilbert series:
1 14 15

denominator with 4 factors:

1: 4

Hilbert polynomial:
1485
with common denominator

Hilbert basis elements are not of degree 1

3K 5K 3K 5K 3K 5K 3K 3K 3K 3K 3K 3K 3K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K k3K K 3K 5k 3K >k 5k K 5k 3k ok >k ok >k Sk K 5k 3K 5k 3K K >k K ok >k ok K ok Kk >k ok kok Kk >k koK kok k

18 Hilbert basis elements of degree 1:
0051
0301
1021
1101

4 support hyperplanes:
-15 -10 -6 30
1 0 0 0
0 1 0 0
0 0 1 0

1

For the polytopal interpretation one must observe thatast dre in homogenized coordinates
for which Normaliz has appended 1 to the input vectors timethis case) are the vertices of the
polytope. In the cone produced, the lattice points of thetople are of degree 1. Therefore
the 18 Hilbert basis elements of degree 1 represent thedaitints of the polytope, starting

from (0,0,5) and ending with1,1,0). The extreme rays represent the 4 vertices.

From the fact that there are 19 Hilbert basis elements, dytidhof degree 1, we see that the
lattice points in the polytope do not yield the Hilbert basishe Ehrhart monoid (or the cone

over the polytope).
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That there is only one simplicial cone in the triangulatismot surprising since our polytope
is a simplex.

The support hyperplanes give us a description of the poéybgpnequalities: it is the solution
of the system of the 4 inequalities

x3>0, >0, x>0 and 1%;+10xy+6x3<30.

The dimension of the polytope is 3 since the cone over it hagdsion 4. The polytope has
Z3-normalized volume 30 as indicated by the multiplicity.

The Ehrhart series (we use the more general term Hilbegsds

1+ 14t + 152
(1-t)*

and its Ehrhart polynomial (again we use a more general tetheioutput file) of the polytope
IS
p(K) = 1+ 4k + 8k? + 5k3.
6.1.3. A rational polytope
We want to investigate the Ehrhart series of the triafghéth vertices
(1/27 1/2)7 (_1/37 _1/3)7 (1/47 _1/2)

The input file isrational.in. Running Normaliz yields the following output:

8 Hilbert basis elements H...t s...s cycl... denom...:
1 Hilbert basis elements of degree 1 -1 -1-1-3 -4 -3 -2
3 extreme rays cyclotomic denominator:
3 support hyperplanes 1: 3 2: 2 3:1 4:1
embedding dimension = 3 H...t quasi-pol...l of period 12:
rank = 3 (maximal) 0: 48 28 15
index = 15 1: 11 22 15
original monoid is not integrally closed 2: -20 28 15

3: 39 22 15
size of triangulation =1 4: 32 28 15
resulting sum of |det|s = 15 5: -5 22 15

6: 12 28 15
grading: 7: 23 22 15
001 8: 16 28 15

9: 27 22 15
degrees of extreme rays: 10: -4 28 15
2:'1 3:1 4:1 11: 7 22 15

with common denominator = 48

multiplicity = 5/8
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Hilbert series:
10032-12211112
denominator with 3 factors:
1:'1 2:1 12: 1

Kok ok oK ok o oK oK K oK oK oK K oK oK oK K oK o oK K K ok o oK oK K ok oK K oK K oK oK K ok ok ok K oK K ok oK K ok ok K oK koK ok K ok ok ok K ok K K K

8 Hilbert basis elements: 3 extreme rays:

1 -2 4 1 1 2

-1 -1 3 -1 -1 3

1 1 2 1 -2 4

0 0 1

0 -1 3 3 support hyperplanes:
1 0 3 2 7 3

1-1 4 -8 2 3

0 -2 5 1-1 0

1 Hilbert basis elements of degree 1:
001

The 3 extreme rays have reproduced the vertices (don't fahge the last coordinate can
be interpreted as a denominator), and the 3 support hypeplepresent the 3 inequalities
that define the polytope as an intersection of affine halispéke in[6.1.2. The Hilbert basis
element of degree 1 shows that there is a single lattice pothe polytope, namely the origin
(0,0). Except thatP has non-integral vertices now, these data are completelipgous to
those of the lattice polytope In 6.1.2.

The multiplicity is a rational number. Since in dimensionh2 thormalized area (of full-
dimensional polytopes) is twice the Euclidean area, welssd’thas Euclidean areg/ %6.

The Hilbert (or Ehrhart) function counts the lattice poimP, k € Z,.. The corresponding
generating function is a rational functiéh(t) with numerator

14331 2t4 54 281 2t7 118119 410 {11 12
and denominator
(1-1)(1—t?)(1—t12).
As a rational functionH (t) has degree-3. This implies that B is the smallest integral

multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of cappolynomials with the denom-
inator factored into cyclotomic polynomials. The multigeitation lists the orders of the
cyclotomic polynomials and their multiplicities. In thiage we have

1+t +t24+1t344t% 4+ 3t2 4 2t6

H(t) =
® 30a
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where; is thei-th cyclotomic polynomial{y =t —1,{o =t +1, {3 =t2+t+1, {s =t?>+1).
Normaliz transforms the representation with cyclotominateinator into one with denomi-
nator of type(1—1t)---(1—t%), r = rank, by choosin@ as the least common multiple of

all the orders of the cyclotomic polynomials appearigg,; as the lcm of those orders that
have multiplicity> 2 etc.

There are other ways to form a suitable denominator with ®fad — t€, for exampleg(t) =
(1-t2)(1-t3)(1—t% = —$L2%8. Of course,g(t) is the optimal choice in this case.
However,P is a simplex, and in general such optimal choice may not eXi& will explain
the reason for our standardization below.

Let p(k) be the number of lattice points k. Thenp(k) is a quasipolynomial:
P(K) = po(K) + pa(K)k+--- + proa (kK™%
where the coefficients depend &nbut only to the extent that they are periodic of a certain

periodrt € N. In our caser= 12 (the Icm of the orders of the cyclotomic polynomials).

The table giving the quasipolynomial is to be read as foltoWse first column denotes the
residue clas§ modulo the period and the corresponding line lists the aoeffts p;(j) in
ascending order af multiplied by the common denominator. So

7 5 5 B
p(k)_1+1—2k+Ek, k=0 (12,

etc. The leading coefficient is the same for all residue elmasd equals the Euclidean volume
as in equatior{1).
Our choice of denominator for the Hilbert series is motidabg the following fact:g is the

common period of the coefficients_j,..., pr_1. The user should prove this fact or at least
verify it by several examples.

6.1.4. Type rees_algebra

Next, let us discuss the exampiees . in:

10

6 0611001
111000 0610110
110100 010011
1061010 601110
100101 0061101
100011 rees_algebra

A comparison with the data irproj2.in shows thatees is the origin ofrproj?2.

Here we want to compute the integral closure of the Rees adg#lihe ideal generated by the
monomials corresponding to the above 10 exponent vectbesolitput inrees . out coincides
with that inrproj2.out, up to terminology and the supplementary information onrnkegral
closure of the ideal:
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1

0

1
1
1
0
1

1

H R © R o

100101
101010
110100
111000

10 generators of integral closure of the ideal:

A brief look atrproj2.out shows that exactly the generators with the last coordinétave
been extracted. (So the ideal is integrally closed. Thisoissuirprising because we have
chosen squarefree monomials.)

6.2. Homogeneous constraints
6.2.1. Type inequalities

The filedual.in is

24
7

000100 0
6006010 O

0061101 -1
0611111 -2

100000 0O
111111 -3

111110 -2
1106111 -2

inequalities

This means that we wish to compute the Hilbert basis of thes aart out fromR’ by the
24 inequalities. (It is the dual of the cone spanned by their®at forms in(R7)*.) The
inequalities represent exactly the support hyperplares the filerproj2.out. The output
in dual.out coincides with that inrproj2.out.

6.2.2. Type equations

Suppose that you have the following “square”

X1

X2

X3

X4

X5

X6

X7

X8

X9

and the problem is to find nonnegative valuesdor
all columns, and both diagonals sum to the same constantSometimes such squares are
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calledmagicand.# is themagic constantThis leads to a linear system of equations

X1+ X2 + X3 = X4+ X5 + Xg;
X1+ X2 + X3 = X7 + Xg + Xo;
X1+ X2+ X3 = X1 + X4 +X7;
X1+ X2+ X3 = X2 + X5+ Xg;
X1+ X2 + X3 = X3+ Xg + Xo;
X1+ X2 + X3 = X1 + X5 + Xo;
X1 4+ Xo 4+ X3 = X3+ X5 + X7.

This system of equations is contained in the $i8magic.in. It has input typequations.
(Don't forget that the sign conditiong > 0 are automatically included if there are no explicit
inequalities.)

The magic constant is a natural choice for the grading, amcktare

1

9
111000000
grading

follows the equations.
The output file contains the following:

5 Hilbert basis elements multiplicity = 4
5 Hilbert basis elements of degree 1
4 extreme rays Hilbert series:
4 support hyperplanes 121
denominator with 3 factors:
embedding dimension = 9 1: 3
rank = 3
index = 2 Hilbert polynomial:
original monoid is not integrally closed 122

with common denominator =1
size of triangulation
resulting sum of |det|s

Il
AN

grading:
111000000
with denominator = 3

degrees of extreme rays:
1: 4

Hilbert basis elements are of degree 1
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5 Hilbert basis elements: 6 equations:
102210021 -2 1 4-3 0 0 0 0 0
021210102 -1 6 1-11 0 0 0 0
201012120 -2 6 2-1 061 0 0 0
120012201 -2 6 3-2 0 01 0 0
111111111 6 0-2 1 0 6 06 1 0

-1 6 2-2 0 0 0 0 1

4 extreme rays:

120012201 5 Hilbert basis elements of degree 1:
201012120 102210021
021210102 0212101002
102210021 201012120

120012201
4 support hyperplanes: 111111111

0-1 06 6 2 06 06 0 O
0 1 2 06-2 06 0 0 0
0-1-2 06 4 06 0 0 0
6 1 06 06 6 6 6 0 0O

The 5 elements of the Hilbert basis represent the magic sguar

2101 1/0|2 1(1/1 120 0|2|1
0|1|2 2110 1(1/1 0|1|2 211|0
1/2|0 021 1(11 2101 1/0]|2

All other solutions are linear combinations of these sgaarigh nonnegative integer coeffi-
cients.

Normaliz tells us that the cone generated by the magic sguarebe described by 4 inequal-
ities and 6 linear relations. The number of equations besartear when we look at the rank.

The input degree is the magic constant. However, as the deaton 3 shows, the magic
constant is always divisible by 3, and therefore the efiectiegree is# /3. This degree is
used for the multiplicity and the Hilbert series.

The Hilbert series is
142t +12

(1-t)3
The Hilbert polynomial is
P(K) = 14 2k + 2k,

and after substituting# /3 for k we obtain the number of magic squares of magic constant
M .
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6.2.3. Type congruences

We change our definition of magic square by requiring thaethtees in the 4 corners are all
even. Then we have to augment the input file as foll@xSnfagiceven.in):

7 4
9 10
111-1-1-1 06 0 0 1000000002
111 0 6 0 -1-1-1 0010000002
©11-1 0 06-1 06 0 0000001002
101 0-1 0 0-1 0 0000000012
1106 0 0-1 0 0-1 congruences
011 6-1 06 0 0-1 1
1106 0-1 0-1 0 0 9
equations 111000000
grading
The output changes accordingly:

9 Hilbert basis elements multiplicity =1
0 Hilbert basis elements of degree 1
4 extreme rays Hilbert series:
4 support hyperplanes 1-131

denominator with 3 factors:
embedding dimension = 9 1:'1 2: 2
rank = 3
index = 4 H...t s...s cycl... denom...:
original monoid is not integrally closed -11 -3 -1

cyclotomic denominator:
size of triangulation =2 1: 3 2: 2
resulting sum of |det|s = 8

H...t quasi-pol...l of period 2:
grading: 0: 2 21
111000000 1: -1 0 1
with denominator = 3 with common denominator = 2

degrees of extreme rays:
2: 4

3K 5K 3K 5K 3K 5K 3K 5K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K k3K K 3K k3K 3k 3K K 3K K 5k 3k 3k 3k ok >k Sk >k Sk K 5k >k 5k 3K K >k K ok >k ok K ok >k ok >k ok kok Kk >k koK kR k

9 Hilbert basis elements: 4 support hyperplanes:
204420042 1 6 1 6-1 06 06 0 0
042420204 -1 1 61 06 0 0 0
402024240 1 6-1 6 1 06 06 0 0
240024402 -1 6-1 6 3 0 0 0 0

222222222
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432135432 6 equations:
252333414 -2 1 4-3 0 0 06 0 0
234531234 1 6 1-1 1 0 0 0 0
414333252 2 06 2-1 061 06 0 0
2 06 3-2 0 6 1 0 0
4 extreme rays: 0 06-21 06 06 06 1 0
240024402 1 06 2-2 06 06 0 01
402024240
042420204 2 congruences:
204420042 0010000002
1000000002
0 Hilbert basis elements of degree 1:

It is not surprising that the support hyperplanes have nanhghd after the introduction of the
congruences, since the latter only modify the latficeSimilarly the number of extreme rays
is the same, but the vectors are multiplied by the factor esiormaliz chooses them i
and therefore these vectors must satisfy the congruences.

Its first representation tells us that the Hilbert series is

1—t+3t24t3
(1-t)(1-t2)%

As in[6.1.3, the second representation gives coprime nuoreaad denominator polynomials
in which the denominator is a product of cyclotomic polynalsi

—1+4+t—3t2—13
;2

In this case, the two denominators differ by the factdr. In general, the first representation
is not coprime, as we have seerlin 6.1.3.

The lattice point enumerator is a quasipolynomial of pefod

G=t-1L{=t+1

1+k+k?/2, k=0 (2

|{X:deg":k}|:{_1/2+k2/2, k=1 (2.

In general one must expect a non-integral multiplicity & greriod is> 1. That the multiplicity
is integral, namely 1, in this case must be considered ampérce

As you can see, the equations make two of the input congreesugeerfluous: it is enough to
require the two corners in the first row to be even. The firsgcoence is to be read ag=0
mod 2, the second ag =0 mod 2.

Another good example for Hilbert series and gradings isrglweCondorcet.in. The reader
should run it or have a look at the corresponding output file.
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6.3. Relations

6.3.1. Type lattice_ideal

As an example, we consider the binomial ideal generated by
XEXo — XaXsXe, X1 X5 — X3X5Xe, X1XoXa — XEXe.

We want to find an embedding of the toric ring it defines and ten@alization of the toric
ring.

The input ideallattice_ideal.inis

3

6

21 0-1-1 -1
10 -1 2 -1 -1
11 1 0 -2 -1
lattice_ideal

It yields the output

6 original generators of the toric ring multiplicity = 10

9 Hilbert basis elements

9 Hilbert basis elements of degree 1 Hilbert series:

5 extreme rays 163

5 support hyperplanes denominator with 3 factors:
1: 3

embedding dimension = 3

rank = 3 (maximal) Hilbert polynomial:

index =1 135

original monoid is not integrally closed with common denominator =1

size of triangulation = 3

resulting sum of |det|s = 10

grading:

1-11

degrees of extreme rays:
1: 5

Hilbert basis elements are of degree 1

3K 5K 3K 5K 3K 5K 3K 5K 3K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K 5k K K 3K K 3K K 5k K 5k koK >k ok >k Sk K 5k >k 5K 3K K >k K ok >k ok K ok Kk >k ok ko k Kk >k koK kok ke

6 original generators: 5 support hyperplanes:
012 1 0 0
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20
01
11
00
33

R H o W
o w o o
1
O N O -
N = 2o

10 Hilbert basis elements of degree 1:
10 Hilbert basis elements: 133
133 100
221 111
111

5 extreme rays:
012

133

The 6 original generators correspond to the indetermingies., X in the binomial equa-
tions. They represent an embedding of the affine monoid dkbgehe binomial equations.

6.4. Type excluded_faces

We choose the input filequareMinusVertex.in:

4 1

2 3

00 110

01 excluded_faces
11

10

polytope

This defines the unit squa€gin R?, and we want to compute the Hilbert function of the cone
over Q minus the ray through the poif®,0,1) which represents the left lower corner of the
square.

Let us restrict ourselves to the part of the output file thiieds from the one obtained without

excluded_faces (4 Hilbert basis elements, all of degree 1 etc.):

1 excluded faces

Hilbert series:

03 -1

denominator with 3 factors:
1: 3

Hilbert polynomial:
021
with common denominator =1
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1 excluded faces:
110

So the Hilbert series is
3t—t? 1+t 1

(1-1)3 (1-t)3 1-t
what we could have computed by hand.

6.5. Generators of polyhedra
6.5.1. Type polyhedron

Let us realize the example of Sectlonl6.4 via the type/hedron. There are of course several
solutions. We choossquareMinusVertexPolyh.in:

4

13
001
grading

N N © O o o

R O R O R Rk O N
H R R RO o
O i S

012
polyhedron

This input defines a polyhedronTi? with three vertices, namelyl/2,1/2,1/2),(0,1/2,1/2),
(1/2,0,1/2), as given by the last 3 rows of the input matrix. (This choiesstices has purely
didactical reasons.) The recession cone is simply the ceeetbe unit square, and its four
rays are determined by the first 4 rows of the input matrixsields the output

3 module generators module rank =1
4 Hilbert basis elements of recession monoid multiplicity = 2
3 vertices of polyhedron
4 extreme rays of recession cone Hilbert series:
6 support hyperplanes of polyhedron 03 -1
denominator with 3 factors:
embedding dimension = 4 1: 3
affine dimension of the polyhedron = 3 (maximal)
rank of recession monoid = 3 shift = 0

size of triangulation
resulting sum of |det|s

Hilbert polynomial:
021
with common denominator =1

I
~ U

dehomogenization:
06001
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grading:
0010

3K 5K 3K 5K 3K 5K 3K 5K 3K 3K K 3K K 3K K 3K K 3K K 3K k3K K 3K K 3K K >k 5k 3K K 3K K 3K K 5k 3k 3k 3k ok >k ok >k Sk K 5k >k 5K 3K K >k K ok 3k ok K ok Kk >k ok ko k Kk kkok kR k

3 module generators: 4 extreme rays of recession cone:
0111 06010
1011 1010
1111 1110
0110

4 Hilbert basis elements of recession monoid:

06010
0110
1010 6 support hyperplanes of polyhedron:
1110 2.0 21
06 -2 2 1
3 vertices of polyhedron: 1 0 0 0
1102 2 2 0 -1
06102 6 1 0 0
1002 6 06 1 0

We see that the vertices &, and the extreme rays and the Hilbert basis of the recession
cone are as expected. The only comment they need is that tbeyiven in homogenized
coordinates with last component 0, although they are veandr3.

The vertices of the polyhedron are exactly as expected. i@gipr may not be clear whether
each of the points in the input is a vertex of the polyhedron.)

Also the interpretation of the support hyperplanes shoelolvious. Forexample, 2 0 -1
represents the inequality
2§1+2&—-1>0.

(Which of the support hyperplanes define(s) a compact face?)

As a new type of data we see a shift. We cannot avoid using ¢esnegative degrees are
not excluded, and we want to avoid true Laurent polynomrathé numerator of the Hilbert
series. We know already that

3t —t2

(1-1)°
is the Hilbert series, whereas the raw result just compwed i

3-t
(1-1)%

So the correction is .
HUuea):Zt_smﬂHcompum&t)
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The Hilbert (quasi)polynomial must be shifted accordingly
true(K) = Acomputed K+ shift).
The module rank is 1, and the multiplicity is the same as th#t@recession monoid since
the leading terms in the Hilbert polynomial agree.
6.6. Inhomogeneous constraints
6.6.1. Type inhom_inequalities

Letx=(—-2,—1/2), y=(0,3/2) and letQ be the line segment joiningandy. We want to
model the polyhedro@+ R (1,0) by inequalities. These are

EZ Z _1/27
& < 3/2
é2 < &1+3/2
and yield the inputnhomIneq.in:

3 1

3 2

0 2 1 10

0 -2 3 grading

2 -2 3

inhom_inequalities

It yields the output

2 module generators

1 Hilbert basis elements of recession monoid

2 vertices of polyhedron

1 extreme rays of recession cone

3 support hyperplanes of polyhedron module rank = 2
multiplicity = 2

embedding dimension = 3

affine dimension of the polyhedron = 2 (maximal) Hilbert series:
rank of recession monoid = 1 011
denominator with 1 factors:
size of triangulation =1 1:1
resulting sum of |det|s = 8
shift = 2
dehomogenization:
001 Hilbert polynomial:
2
grading: with common denominator =1
100

49



3K 5K 3K 5K 3K 5K 3K 5K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K 3K K >k 5k 3K K 3K k3K K 5k K 5k 3k ok >k ok >k Sk K 5k 3K 5k 3K K >k K ok 3k 5k K ok >k 5k >k ok kok Kk >k koK kR k

2 module generators: 1 extreme rays of recession cone:
-1 0 1 100
06 1 1

1 Hilbert basis elements of recession monoid:

100

2 vertices of polyhedron: 3 support hyperplanes of polyhedron:
-4 -1 2 06 2 1
0 3 2 0 -2 3

2 -2 3

The module rank is 2 in this case since we have two “layershéndolution module that are
parallel to the recession monoid. The Hilbert series is

Ltt2 tl4d
1-t  1-t

t

It reflects the disjoint decompositidg—1,0) +Z.(1,0)) U((0,1) +Z(1,0)) of the solution
module:(—1,0) has degree-1, (0,1) has degree 0.
6.6.2. Type strict_inequalities

Once more we choose the example of Sedtioh 6.4, this timeeealvith a strict inequality
(SquareMinusVertexStrict.in):

4 1

3 3

0 -1 1 110

1 0 0 strict_inequalities
-1 0 1 1

6 1 0 3

inequalities 001

grading

There is nothing to comment on the output since it is idehtwahat of Sectiorl 6.5]11. The
strict inequality is only a shortcut for

1

4

110 -1
inhom_inequalities

The two inequalities represented byo 6 ande 1 0 could also be given by
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13
110
signs

6.6.3. Type inhom_equations
We want to compute the nonnegative solutions of the system

é1+28, +383— 484 — 585 — 68— Té7 = —3,
—3é—283— é4— é5+286+137 = —T.

A suitable input iSInhomEq. in:

28

1 2 3-4-5-6-73
06 -3-2-1 1 2137
inhom_equations

This is only to demonstrate the use of this type. We restucselves to the abstract of the
output file (default computation mode):

69 module generators
236 Hilbert basis elements of recession monoid

7 vertices of polyhedron size of triangulation = 46
13 extreme rays of recession cone r...g sum of |det|s = 10790791
7 support hyperplanes of polyhedron

dehomogenization:
embedding dimension = 8 00000001
affine dimension of the polyhedron = 5
rank of recession monoid = 5 module rank =1

46
10790791

size of triangulation
resulting sum of |det|s

The example shows that the determinants of the simpliciaésaon the triangulation can be
quite large for seemingly harmless examples. It is then norse that the computation in the
dual mode is significantly faster, yielding the same infaiiora

6.6.4. Type inhom_congruences

The input fileChineseRemainder.in shows that Normaliz can even be used for elementary
number theory:
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3

3

215

1-17

-1 511
inhom_congruences

This means that we want to solve the simultaneous congraence

2x=-1 (5),
x=1 (7),
x=-5 (1)

The conditiorx > 0 is implicit, but it doesn’t harm.
The solution isx = 302 (385):

1 module generators:
302 1

1 Hilbert basis elements of recession monoid:
385

7. Optional output files

When one of the optionsf, -a, -T, -y or an option calling NmziIntegrate is activated, Normaliz
writes additional output files whose names are of typeoject>.<type>. The format of
most files is completely analogous to that of the input filegegt that there is usually no
last line denoting the type. The main purpose of these filés ggve the other systems easy
access to the results of Normaliz without complicated parsihe packages for Singular and
Macaulay 2 use the extra output files to retrieve the restdiltdoomaliz. Furthermore they
provide additional information not contained in the staxdautput file.

7.1. The homogeneous case

The option- f makes Normaliz write the following files:

gen contains the Hilbert basis.

cst contains the constraints defining the cone and the lattidckarsame format as they
would appear in the input: matrices of typesnstraintsfollowing each other. Each
matrix is concluded by the type of the constraints. Emptyrites are indicated by 0 as
the number of rows. Therefore there will always be at leastgiges.
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If a grading is defined, it will be appended. Therefore this fitith suffixin) as input
for Normaliz will reproduce the Hilbert basis and all the etldata computed, at least
in principle.

inv contains all the information from the fileut that is not contained in any of the other
files.

If -ais activated, then the following files are writtadditionally:

typ This is the product of the matrices correspondingdo andesp. In other words, the
linear forms representing the support hyperplanes of time Coare evaluated on the
Hilbert basis. The resulting matrix, with the generatorgesponding to the rows and
the support hyperplanes corresponding to the columns jitewto this file.
The suffixtyp is motivated by the fact that the matrix in this file dependly @m the
isomorphism type of monoid generated by the Hilbert baggst(urow and column
permutations). In the language 0f [2] it contains sit@ndard embedding

ext contains the extreme rays of the cone.

htl contains the degree 1 elements of the Hilbert basis if a ggadidefined.

egn,esp These contain the Hilbert basis and support hyperplandgicdordinates with re-

spect to a basis d. egn contains the grading in the coordinatediaf one exists. Note
that no equations faC N E or congruences fdt are necessary.

7.2. Triangulation and Stanley decomposition

The option-T (independently from f or -a) writesinv and the triangulation data:

tgn, tri These files together describe the triangulation computeddrynaliz.
The file tri lists the simplicial subcones as follows: The first line @n$ the number
of simplicial cones in the triangulation, and the next lirm@ins the numbem+ 1
wherem = rankE. Each of the following lines specifies a simplicial cofethe first
m numbers are the indices (with respect to the order in the di¢ of those generators
that spar\, and the last entry is the multiplicity & in [E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elésnefi).
If -t is combined with-T, then the determinants have not been computed, and the last
entry of each row is O (a forbidden value for the determinant)
The filetgn contains a matrix of vectors (in the coordinated®Epanning the simplicial
cones in the triangulation.

The following example is the 2-dimensional cross polytojié wne excluded face toss2.in)

4 2 13

1 0 1 1-1

0 1 excluded_faces
-1 0

0 -1

polytope

Its tgn andtri files are
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tgn tri

4 2

3 4

101 1232
011 1342
-101

0 -11

We see the 4 vertices, ..., v4 in homogenized coordinates tgn and the 2 simplices (or the
simplicial cones over them) itri: both have multiplicity 2.

The option-y (independently from f or -a) writesinv, tgn and the Stanley decomposition:

dec This file contains two types of data: (a) the information fesg from the excluded
faces in connection with the sieve formula for inclusiomlasgion, (b) the Stanley de-
composition.
(a) If there are any excluded faces, the file starts with thedwe_ex_data. The next
line contains the number of such data that follow. Each afelmes contains the data
of a face and the coefficient with which the face is to be cadintiee first number lists
the number of generators that are contained in the facewetl by the indices of the
generators relative to then file and the last number is the coefficient.
(b) The second block (the first if there are no excluded fastm)}s with the word
Stanley_dec, followed by the number of simplicial cones in the triangida.
For each simplicial conA in the triangulation this file contains a block of data:
(i) a line listing the indice$, ..., in of the generators;,, ..., vi,, relative to the order in
tgn (as intri, m= rankE);
(i) a u x mmatrix whereu the multiplicity of A (see above).
In the notation of([6], each line lists an “offset™+ £(X) by its coordinates with respect
tovi,,...,Vi, as follows: if(as, .. .,am) is the line of the matrix, then

1
X+ &(X) = E(alvil +-Famvi,)-

Thedec file of the example above is

in_ex_data
1

212 -1
Stanley_dec
2

134 123
2 2
3 3
002 000
112 101
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There is 1 face inn_ex_data (namely the excluded one), it contains the 2 generatpesnd

V> and appears with multiplicity-1. The Stanley decomposition consists of 4 components of
which each of the simplicial cone contains 2. The seconabifsthe second simplicial cone

IS

1
é(lvl-l— Ovy + 1V3> = (0, 0, 1).

The file 3x3magiceven.in has been processed with the optianTy activated. We recom-
mend you to inspect all the output files in the subdirectommple of the distribution.

7.3. Modifications in the inhomogeneous case

The types are a subset of the types that can be produced inthegeneous case. The main
difference is that the generators of the solution modulethadHilbert basis of the recession
monoid appear together in the fiden. They can be distinguished by the last component, as
discussed already, and the same applies to the vertice® giollghedron and extreme rays
of the recession cone. The figgt contains the constraints defining the polyhedron and the
recession module in conjunction with the dehomogenizatibich is also contained in the
cst file, following the constraints.

With -a the filestyp, egn andesp are produced, butyp has no meaning. The other two files
containgen in the coordinates of the efficient homogenized lattice &edstipport hyperplanes
of the homogenized cone in the coordinate& of

8. Advanced topics

8.1. Primal vs. dual

It has been pointed out several times above that the dualithigocan be much faster if the
number of support hyperplanes is small relative to the dsimm This is in particular true

for (in)homogeneous linear systems of equations whereuheer of support hyperplanes is
bounded above by the number of indeterminatek i) the inhomogeneous case).

The paperl[6] contains computation times for many examplasdan help the user to choose
the right algorithm.

8.2. Polytope vs. polyhedron

Every polytope is a polyhedron, and therefore the input g&ghedron or inhomogeneous
constraints seems to be a reasonable choice in order to ¢erpplytopes. In general it is
not since in homogenized coordinates all computations rarecated at degree 1, and the
information hidden in the cone over the polytope cannot lainbd.

If a polytope is defined via inhomogeneous data, the compuatatre essentially limited to
the lattice points in the polytope, and the multiplicity qoumed this way is their number.
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8.3. Lattice points in polytopes

If only the lattice points in a rational polytope are to be guied, there are essentially three
options:
-1 Use the primal algorithm on the original polytope.
-r Use the primal algorithm on an integral approximation.
-d1 Use the dual algorithm on the original polytope.

For lattice polytopes1 and -r are identical. The choice between the primal and the dual
algorithm has been discussed above. Note thatis not a Hilbert basis computation via
-d with a subsequent selection of degree 1 elements. On theacgrdll computations are
truncated in degree 1.

In order to compare the approaches the user should try to uientipe degree 1 points for the
examplehickerson-18.in (taken from the LattE distribution [9]): withr it is a matter of
seconds, with d1 it is doable with some patience, antl seems to be out of reach presently.
(On a powerful machined is doable.)

8.4. Semiopen vs. inhomogeneous

The user may have noticed that the typeluded_faces is in principle superfluous since
the Hilbert series of semiopen cones can also be computedhaenogeneous input using
strict_inequalities. However, the two types represent different algorithmigrapches:

(1) The computation with excluded faces are done in the lioai§ cone without the in-
troduction of an additional coordinate: the Stanley decositpon is restricted to the
excluded faces and all faces that arise from them as intesasc The result is then
obtained by the sieve formula for inclusion/exclusion.

(2) For inhomogeneous input we introduce a homogenizingdinate, and the Stanley
decomposition of the homogenized monoid is restricted edtyperplan&(x) = 1 (o
is the dehomogenization).

As a rule of thumb,excluded_faces should be preferred if only few faces are excluded.
Moreover, at present they present the only way for applyingzMtegrate to semiopen cones.

8.5. Performance and parallelization

The executables of Normaliz have been compiled for paizdiébn on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” tirhéhe computations considerably,
even on relatively small systems. However, one should nd¢restimate the administrational
overhead involved.

e Itis not a good idea to use parallelization for very smallgems.
e On multi-user systems with many processors it may be wisarth the number of
threads for Normaliz somewhat below the maximum number #sco
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The number of parallel threads can be limited by the Norn@gdizon - x (see Sectioh 415) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)
or
set OMP_NUM_THREADS=<T> (Windows)

where<T> stands for the maximum number of threads accessible to Niztnkar example,
we often use

export OMP_NUM_THREADS=16

on a multi-user system system with 24 cores.
Limiting the number of threads to 1 forces a strictly seri@@ition of Normaliz.

The paperl[B] contains extensive data on the effect of mdizdtion. On the whole Normaliz
scales very well.

8.6. Running large computations

Normaliz can cope with very large examples, but it is usudiicult to decide a priori
whether an example is very large, but nevertheless doabmply impossible. Therefore
some exploration makes sense.

See [6] for some very large computations. The following $inefflect the authors’ experience
with them.

(1) Run Normaliz with the optioncs and pay attention to the terminal output. The number
of extreme rays, but also the numbers of support hyperplaht#® intermediate cones are
useful data.

(2) In many cases the most critical size parameter is the pumbsimplicial cones in the

triangulation. It makes sense to determine it as the negt $fgen with the fastest potential
evaluation (optionv), finding the triangulation takes less time, say by a faceiwieen 3 and

10. Thus it makes sense to run the example witin order to explore the size.

As you can see from [6], Normaliz has successfully evaluaitadgulations of sizez 5- 10t
in dimension 24.

(3) Another critical parameter are the determinants of #rgegator matrices of the simplicial
cones. To get some feeling for their sizes, one can redtiedniput to a subset (of the extreme
rays computed in (1)) and use the option

The output file contains the number of simplicial cones ad aglthe sum of the absolute
values of the determinants. The latter is the number of vettobe processed by Normaliz in
triangulation based calculations.

57



The number includes the zero vector for every simplicialeconthe triangulation. The zero
vector does not enter the Hilbert basis calculation, buhotaibe neglected for the Hilbert
series.

Normaliz has mastered calculations withl 0*° vectors.

(4) If the triangulation is small, we can add the optianin order to actually see the triangu-
lation in a file. Then the individual determinants becomeoles

(5) If a cone is defined by inequalities and/or equations icdenghe dual mode for Hilbert
basis calculation, even if you also want the Hilbert series.

(6) The size of the triangulation and the size of the deteamiimiaraenot dangerous for memory
by themselves (unlesst or -y are set). Critical magnitudes can be the number of support
hyperplanes, Hilbert basis candidates, or degree 1 elsment

9. Distribution and installation

In order to install Normaliz you should first download the ibgsmckage containing the doc-
umentation, examples, source code, jNormaliz, Nmzintegrad the packages for Singular
and Macaulay2. Then unzip the downloaded fitemaliz2.11.zip in a directory of your
choice. (Any other downloaded zip file for Normaliz should w&ipped in this directory,
too.)

This process will create a directonprmaliz2.11 (called Normaliz directory) and several
subdirectories imormaliz2.11. The names of the subdirectories created are self-exjplignat
Nevertheless we give an overview:

e Inthe main directorylormaliz2.11 you should findjNormaliz.jar, Copying and sub-
directories.

e The subdirectorgource contains the source files andhakefile for compilation with
GCC. The subdirectorgentEhrhart contains the Nmzintegrate source.

e The subdirectorgoc contains the file you are reading and further documentation.

¢ Inthe subdirectorgxample are the input and output files for some examples. It contains
all input files of examples of this documentation, exceptttheexamples of Section
[3. Some very large output files are contained in an extra @paficessible from the
Normaliz home page.

e The subdirectorgingular contains the SIGULAR library normaliz.lib and a PDF
file with documentation.

e The subdirectoryiacaulay2 contains the MCAULAY 2 package&lormaliz.m2.

e The subdirectoryib contains libraries for jNormaliz.

We provide executables for Windows, Linux (each in a 32 bit ar64 bit version) and Mac.
Download the archive file corresponding to your syskemmaliz2.11<systemname>.zip and
unzip it. This process will store the executables of Normahd NmziIntegrate in the directory
Normaliz2.11. In case you want to run Normaliz from the command line or uf®in other
systems, you may have to copy the executables to a directtng search path for executables.
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Please remove old versionsrafrmaliz, norm64 andnormbig from your search path.
Running Nmzintegrate requires the additional downloadsoéxecutable for your system.

10. Compilation

We only describe the compilation of Normaliz. See the doquateon of Nmzintegrate for its
compilation.

10.1. GCC

Produce the executables by callingke in the subdirectorgource. You may have to trans-
port the executables to a directory in your search pplormaliz expects them in its own
directory.

Note thathormaliz needs GMP (including the C++ wrapper) and the Boost cobectl here-
fore you must install them first.

We are using OpenMP 3.0. Please make sure that your GCC nassammpatible with it
(version> 4.4).

Note the followingexceptions:

1. One can compile Windows executables with the Cygwin po@©C. Unfortunately it
is not compatible to OpenMP.

2. Mac versions of GCC older than 4.5 have a bug that makepassible to use OpenMP.
In any case, or if you want to avoid parallelization, you cali gake OPENMP=no.

10.2. Visual Studio project

The Windows executables provided by us have been compildtdM& Visual Studio and
Intel C++ Composer XE. (Visual C++ itself can only be usedwiit OpenMP.)

If you want to compile Normaliz yourself in this way, pleaseip the corresponding zip file
on the Normaliz home page. This will create a subdirectagual Studio of the Normaliz
directory. This directory contains the predefined proj@é. have provided

1. two configurationsRelease (with OpenMP) aniReleaseSerial (without OpenMP),
and
2. two platformswin32 andx64.
Instead of GMP we use the MPIR library for the Windows versidmormaliz. For con-

venience, the MPIR files have been included in the distmou(in the subdirectorypIr of
Visual Studio). Please

e copy the library files for Win32 into theib subdirectory of the Visual C++ compiler,
e the library files for x64 to the subdirectosyd64 (or x64) of 1ib, and
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e the two header files to thimclude subdirectory of the compiler.

Moreover, you mustinstall the Boost collection availalbteri http://www.boost.org/. We only
use Boost libraries that are entirely implemented in theaders. So the only preparation
beyond downloading and unzipping is to add the Boost roactlry to the list of include
paths. In the Visual Studio C++ IDE, click “Tools | Optiong.Projects | VC++ directories”.
Then, in “Show Directories for”, select “Include files” anddathe path to the Boost root
directory.

After the compilation with the Intel compiler you must copyetexecutable to the directories
where they are expected (the Normaliz directory or a dirgatothe search path).

The source files for Visual Studio are identical to those f@U5

11. Copyright and how to cite

Normaliz 2.11 is free software licensed under the GNU Gédrfewalic License, version 3.

You can redistribute it and/or modify it under the terms & @NU General Public License as
published by the Free Software Foundation, either versiirtl3e License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITRID ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR PARTICULAR
PURPOSE. See the GNU General Public License for more details

You should have received a copy of the GNU General Publicriseaalong with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it hagb used:

W. Bruns, B. Ichim, T. Romer and C. Séger: Normaliz. Algamikfor rational cones and
affine monoids. Available from http://www.math.uos.defmaliz.

It is now customary to evaluate mathematicians by such datauanbers of publications,
citations and impact factors. The data bases on which sugioulsievaluations are based do
not list mathematical software. Therefore we ask you totbigearticle [6] in addition. This is
very helpful for the younger members of the team.
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A. Mathematical background and terminology

For a coherent and thorough treatment of the mathematici&bbaund we refer the reader to

[2].

A.1. Polyhedra, polytopes and cones
An affine halfspacef RY is a subset given as
HY = {x:A(x) >0},

where) is an affine form, i.e., a non-constant mapRY — R, A (X) =aqX1+ -+ agxd + B
with a1,...,aq4,B € R. If B =0 andA is therefore linear, then the halfspace is calladar.
The halfspace isational if A is rational, i.e., has rational coordinates. Afis rational, we
can assume that it is evamtegral, i.e., has integral coordinates, and, moreover, that these
coprime. Them is uniquely determined bM)\*. Such integral forms are callgutimitive, and
the same terminology applies to vectors.

Definition 1. A (rational) polyhedron Pis the intersection of finitely many (rational) halfs-
paces. If it is bounded, then it is callegalytope If all the halfspaces are linear, théns a
cone.

Thedimensiorof P is the dimension of the smallest affine subspac@aitontainingP.

A support hyperplane d? is an affine hyperpland that intersect®, but only in such a way
thatH is contained in one of the two halfspaces determine#ibyrhe intersectiotd NP is
called afaceof P. It is a polyhedron (polytope, cone) itself. Faces of dini@m$® are called
vertices those of dimension 1 are calledigeqin the case of conesxtreme rayg and those
of dimension diniP) — 1 arefacets

When we speak dhesupport hyperplanes &f, then we mean those intersectifgn a facet.
Their halfspaces containirfg cut outP from aff(P). If dim(P) = d, then they are uniquely
determined (up to a positive scalar).

The constraints by which Normaliz describes polyhedra are

(1) linear equations for afP) and
(2) linear inequalities (simply called support hyperplsineutting out® from aff(P).

In other words, the constraints are given by a linear systeerjaations and inequalities,
and a polyhedron is nothing else than the solution set ofeatisystem of inequalities and
equations. It can always be represented in the form

Ax>b, AcR™dpeR™

if we replace an equation by two inequalities.
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A.2. Cones

The definition describes a cone by constraints. One can &euitty describe it by generators:

Theorem 2 (Minkowski-Weyl). The following are equivalent for € R;
1. Cis a (rational) cone;
2. there exist finitely many (rational) vectorg x ., X, such that

C:{alxl—i—----i—anxn:al,...,aneR+}.

By R. we denote the set of nonnegative real numb@&s;andZ. are defined in the same
way.

The conversion between the description by constraints laaidity generators is one of the
basic tasks of Normaliz. It uses tReurier-Motzkin elimination

A cone ispointedif x € Cand—x € Cis only possible withx = 0. If a rational cone is pointed,
then it has uniquely determinextreme integral generatarg hese are the primitive integral
vectors spanning the extreme rays. These can also be defitheespect to a sublattide of
74, providedC is contained irRL.

Thedual cone C is given by
C'={A e (RY*:A(x) >0forallxeC}.

Under the identificatio®? = (RY)** one hasC** = C. Let Cy be the set of those e C for
which —x € C as well. It is the largest vector subspace containdtl ithen one has

dimCy+dimC* =d.

In particular,C is pointed if and only ifC* is full dimensional, and this is the criterion for
pointedness used by Normaliz. Linear foris...,A, generateC* if and only if C is the
intersection of the halfspaceﬁ . Therefore the conversion from constraints to generators

and its converse are the same task, except for the exchaiitfeanfd its dual space.

A.3. Polyhedra

In order to transfer the Minkowski-Weyl theorem to polyheedlr is useful to homogenize
coordinates by embeddifRf as a hyperplane iR4+1, namely via

K:RISRIFL k(x)=(x,1).

If Pis a (rational) polyhedron, then the closure of the unionheftays from 0 through the
points ofk (P) is a (rational) con€(P), called thecone over P The intersectio(P) N (RY x
{0}) can be identified with theecessior(or tail) cone

reqP) = {xeRY:y+xePforallye P}.
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It is the cone of unbounded directionsfn The recession cone is pointed if and onlfPihas
at least one bounded face, and this is the case if and onliiafsita vertex.

The theorem of Minkowski-Weyl can then be generalized devid:

Theorem 3(Motzkin). The following are equivalent for a subset4 of RY:
1. Pis a (rational) polyhedron;
2. P=Q+C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the conuipftits vertices, and C=reqP)
is uniquely determined.

Theconvex hulbf a subseX € RY is
conM X)={aix1+ - +anXn:n>1xq,....%5n € X,a1,...,an € Ry ;g + - +an=1}.

Clearly, P is a polytope if and only if red@) = {0}, and the specialization to this case one
obtains Minkowski's theorem: a subgetof RY is a polytope if and only if it is the convex
hull of a finite set. Alattice polytopas distinguished by having integral points as vertices.

Normaliz computes the recession cone and the poly@pe P is defined by constraints.
Conversely it finds the constraints if the vertice$o&nd the generators Qfare specified.

Suppose tha® is given by a system
Ax>b, AeR™d peRM

of linear inequalities (equations are replaced by two iraditjgs). TherC(P) is defined by the
homogenized system
AX—Xg11b>0

whereas the ré®) is given by theassociated homogeneous system

Ax> 0.

It is of course possible thd is empty if it is given by constraints since inhomogeneous
systems of linear equations and inequalities may be unisielvBy abuse of language we call
the solution set of the associated homogeneous systemcigsien cone of the system.

Via the concept of dehomogenization, Normaliz allows for erengeneral approach. The
dehomogenizatiois a linear formd on R4+1, Fora cone&€ in R41 and a dehomogenization
0, Normaliz computes the polyhedrén= {x € C: 6(x) = 1} and the recession cofe= {x €
C: 3(x) = 0}. In particular, this allows other choices of the homogemjzioordinate. (Often
one choosex, the first coordinate then.)

In the language of projective geometdy(x) = 0 defines the hyperplane at infinity.
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A.4. Affine monoids

An affine monoid Mis a finitely generated submonoid @f for somed > 0. This means:
0eM,M+M C M, and there existy, ..., X, such that

M={aiXg+ --+aXn:a....,an € Z }.

We say thaky, ..., X, is asystem of generatos M. A monoidM is positive ifx € M and
—X € M impliesx= 0. An elemenk in a positive monoid is calledirreducibleif it has no
decompositiox =y+zwith y,ze M, y,z# 0. Therank of M is the rank of the subgroup
gp(M) of 74 generated byl. (Subgroups of.9 are also called sublattices.)

Theorem 4(van der Corput) Every positive affine monoid M has a unique minimal system of
generators, given by its irreducible elements.

We call the minimal system of generators thiébert basisof M. Normaliz computes Hilbert
bases of a special type of affine monoid:

Theorem 5(Gordan’s lemma)Let Cc RY be a (pointed) rational cone and letd Z9 be a
sublattice. Then QL is a (positive) affine monoid.

LetM c Z9 be an affine monoid, and I8t > M be an overmonoid (not necessarily affine), for
example a sublattice of Z9 containingM.

Definition 6. Theintegral closure(or saturatior) of M in N is the set
Mn = {x € N : kxe M for somek € Zk > 0}.

If My = M, one callsM integrally closedn N.
The integral closur® of M in gp(M) is its normalization M is normalif M = M.

The integral closure has a geometric description:

Theorem 7. R
My = congM) N N.

Combining the theorems, we can say that Normaliz computiegrial closures of affine
monoids in lattices, and the integral closures are theraseadifine monoids as well. (More
generallyMy is affine ifM andN are affine.)

In order to specify the intersectiddN L by constraints we need a system of homogeneous
inequalities foiC. Every sublattice o9 can be written as the solution set of a combined sys-
tem of homogeneous linear diophantine equations and a hemeogs system of congruences
(this follows from the elementary divisor theorem). THiSIL is the solution set of a ho-
mogeneous linear diophantine system of inequalities,t@nsand congruences. Conversely,
the solution set of every such system is a monoid of ype_.
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A.5. Affine monoids from binomial ideals

Let U be a subgroup of.". Then the natural imaghl of Z C Z" in the abelian group
G =Z"/U is a submonoid of5. In general G is not torsionfree, and therefol may not
be an affine monoid. However, the imalgeof M in the latticeL = G/torsion(G) is an affine
monoid. GivenU, Normaliz chooses an embeddihg— Z', r = n—rankU, such thatN
becomes a submonoid @f, . In general there is no canonical choice for such an embgddin
but one can always find one, providichas no invertible element except 0.

The typical starting point is an idedlC K[Xy,...,X,] generated by binomials
X3 .ox3 —xPr b,

The image ofK[Xy,...,Xy] in the residue class ring of the Laurent polynomial rig-
K[X;t, ..., X1 modulo the ideallSis exactly the monoid algebi&[M] of the monoidM
above if we letJ be the subgroup di" generated by the differences

(a]_,...,an)—(b]_,...,bn).

Ideals of typeJSare called lattice ideals if they are prime. Since Normalimaatically
passes t6/torsionG), it replaces)Sby the smallest lattice ideal containing it.

A.6. Lattice points in polyhedra

Let P c RY be a rational polyhedron aridc Z¢ be anaffine sublatticei.e., a subse+ Lg
wherew € Z9 andLg ¢ Z% is a sublattice. In order to investigate (and comp®e)L one
again uses homogenizatioR:is extended t&(P) andL is extended toZ = Lo+ Z(w, 1).
Then one computeS(P) N.%. Via this “bridge” one obtains the following inhomogeneous
version of Gordan’s lemma:

Theorem 8. Let P be a rational polyhedron with vertices anddw-+ Lg an affine lattice as
above. Seteq (P) =reqP) NLo. Then there existx...,xm € PNL such that

PAL={(x1+rea(P))N---N(Xm+rea.(P))}.

If the union is irredundant, themx .., Xy are uniquely determined.

The Hilbert basis of raqP) is given by{x: (x,0) € Hilb(C(P)N.¥)} and the minimal system
of generators can also be read off the Hilbert bas&(&f) N.Z: itis given by those for which
(x,1) belongs to HIlBC(P) N.¥). (Normaliz computes the Hilbert basis ©fP) NL only at
“levels” 0 and 1.)

We call re¢ (P) therecession monoidf P with respect td- (or Lo). It is justified to callPNL
amoduleover reg (P). In the light of the theorem, it is a finitely generated modaled it has
a unigue minimal system of generators.

After the introduction of coefficients from a field, req (P) is turned into an affine monoid
algebra, andN = PN L into a finitely generated torsionfree module over it. As siidias a
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well-definedmodule rankmrank'N), which is computed by Normaliz via the following com-
binatorial description: Let, ..., Xy be a system of generatorsfas above; then mrafik)
is the cardinality of the set of residue classeg0f. ., xn modulo reg¢(P).

Clearly, to modelP "L we need linear diophantine systems of inequalities, egostand
congruences which now will be inhomogeneous in generalv@sely, the set of solutions of
such a system is of tygenL.

A.7. Hilbert series

Normaliz can compute the Hilbert series and the Hilbert égpalynomial of a graded monoid.
A grading of a monoidM is simply a homomorphism dedM — Z9 whereZ9 contains the
degrees. Thelilbert seriesof M with respect to the grading is the formal Laurent series

H(t) = Z #{xe M :degx= u}tlljl...tgg — Z/Itdegx7
Xe

uez9

provided all set§x € M : degx = u} are finite. At the moment, Normaliz can only handle
the caseg = 1, and therefore we restrict ourselves to this case. We assuihe following
that deg > O for all nonzerox € M and that there exists anc gp(M) such that deg = 1.
(Normaliz always rescales the grading accordingly.)

The basic fact about (t) in theZ-graded case is that it is the Laurent expansion of a rational
function at the origin:

Theorem 9(Hilbert, Serre; Ehrhart)Suppose that M is a normal affine monoid. Then

R(t)
(1t

H(t) = R(t) € Z[t],
where r is the rank of M and e is the least common multiple ofdiégrees of the extreme
integral generators ofondM). As a rational function, Kit) has negative degree.

The statement about the rationalitytéft) holds under much more general hypotheses.

Usually one can find denominators fdi(t) of much lower degree than that in the theorem,
and Normaliz tries to give a more economical presentatidd (bf as a quotient of two poly-
nomials. One should note that it is not clear what the mostrabpresentation ofl (t) is in
general (wher > 1). We discuss this problem inl[6, Section 4] anfin 6.1.3. &emples in
Sectior 6, especially 6.1.3 ahd 6]2.3, may serve as arrdhics.

A rational coneC and a grading together define the rational polytQpe CNA; whereA; =
{x:degx = 1}. In this sense the Hilbert series is nothing but the Ehrrenies ofQ. The
following description of the Hilbert functioll (M, k) = #{x € M : degx = k} is equivalent to
the previous theorem:

Theorem 10. There exists a quasipolynomial g with rational coefficiedegreerankM — 1
and periodrt dividing e such that KM, k) = q(k) for all g > 0.
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The statement about the quasipolynomial means that thistpexynomialsy)), j =0,..., 71—
1, of degree rankl — 1 such that

and . . .
gV (k) =ql +gk+ - +qP KL r=rankm,

rf
with coefﬁcientsqi(j) € Q. Itis not hard to show that in the case of affine monoids all gom
nents have the same degreel and the same leading coefficient:

vol(Q)
(r—21)1’

Or-1=

where vol is the lattice normalized volume@f(a lattice simplex of smallest possible volume
has volume 1). It is called thaultiplicity of M.

Suppose now tha is a rational polyhedron iR9, L c Z9 is an affine lattice, and we consider
N = PNL as a module oveM = req_(P). If Z9 is endowed with a grading whose restriction
to M satisfies our conditions, then the Hilbert series

Hn(t) = Zwtdegx
Xe

is well-defined, and the qualitative statement above aladidgrrality remain valid. However,
in general the quasipolynomial gives the correct value efHibert function only fork > 0.
The leading coefficient is still constant and given by

vol(Q)
(r—1)V

gr—1 = mrankN) Q=redP)NA;.
Themultiplicity of N is mrankKN) vol(Q).

SinceN may have generators in negative degrees, Normaliz shigtslégrees int@. by
adding a constant, called tsbift (The shift may also be negative.)

B. Changes relative to version 2.5

For the history of changes starting from 2.0 see the manuasion 2.7 (still accessible on
the web site). Note that some changes have become obsaésteria

Changes in version 2.7:
User control, input and output:

1. Only one executableormaliz. Precision controlled by optiors.
2. Slight changes in the wording of the main output file.
3. Introduction of options for large problems. (Obsolete.)
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Algorithms and implementation:

1. Separation of front end and kernel (implemented as arlipra

2. Pyramid based algorithms for large problems (see [6]).

3. New algorithm foh-vector. No computation of line shellings in this version.
4. Dual mode accessible from all input types.

5. General improvement of memory use (and speed) by moréeeffidata types.

Changes in version 2.8:
User control, input and output:

1. Use of arbitraryZ-gradings which make rational polytopes accessible.
2. Implied changes in the output files.
3. Simplification of the command line options. (“Large” msdww superfluous.)

Algorithms and implementation:
1. Handling of arbitraryZ-gradings.
2. Substantial improvement of parallelization, based amdihgh use of pyramid decompositions

(seell®]).

3. Faster evaluation of simplicial cones (see [6]).
4. General overhaul of the code.

Changes in version 2.9:

User control, input and output:

1. Introduction of typesigns.
2. Options for calling Nmzintegrate.
3. Corresponding output options and output files.

Algorithms and implementation:

1. Introduction of NmzIntegrate (independent executable)
2. Faster volume computation by using the heights of sirigblemnes attached to unimodular ones.
3. Parallelization of pyramid decomposition also for suppgperplane computation.

Changes in version 2.10:
User control, input and output:

1. Corrections in the output forwarded to Nmzintegrate.
Algorithms and implementation:

1. Normaliz now avoids the production of duplicates of cdatis for the Hilbert basis. At the
expense of some computation time, this strategy saves maatony.

Version 2.10.1 is only a bug fix.
Changes in version 2.11:
User control, input and output:
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1. Addition of inhomogeneous input types.
2. Hilbert series of semiopen cones.

Algorithms and implementation:

1. Corresponding extension of algorithms.

Integral approximation of rational polytopes.

Lattice points in polytopes via the dual algorithm.

Improvement in Fourier-Motzkin elimination by betteleusf pyramid decomposition.

o~ WD

Substantial improvement in computing “large” simplicianes.
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