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1. Introduction

1.1. The objectives of Normaliz

The program Normaliz is a tool for computing the Hilbert bases and enumerative data of ratio-
nal cones and, more generally, sets of lattice points in rational polyhedra. The mathematical
background and the terminology of this manual are explained in Appendix A. For a thorough
treatment of the mathematics involved we refer the reader to [4]] and [6]]. The terminology
follows [4]. For algorithms of Normaliz see [3], [7]], [8] and [9]]. Some new developments are
briefly explained in this manual.

Both polyhedra and lattices can be given by

(1) systems of generators and/or
(2) constraints.

In addition to generators and constraints, affine monoids can be defined by lattice ideals, in
other words, by binomial equations.

In order to define a rational polyhedron by generators, one specifies a finite set of vertices
X1,...,X, € Q% and aset yy,...,y, € Z¢ generating a rational cone C. The polyhedron defined
by these generators is

P =conv(xy,...,x;)+C, C=R y;+--+Ryiyy.
An affine lattice defined by generators is a subset of Z¢ given as
L=w+Ly, Lo=%2z1+---+ 2z, w,zl,...,zreZd.

Constraints defining a polyhedron are affine-linear inequalities with integral coefficients, and
the constraints for an affine lattice are affine-linear diophantine equations and congruences.
The conversion between generators and constraints is an important task of Normaliz.

The first main goal of Normaliz is to compute a system of generators for
PNL.

The minimal system of generators of the monoid M = C N Ly is the Hilbert basis Hilb(M) of
M. The homogeneous case, in which P = C and L = L, is undoubtedly the most important
one, and in this case Hilb(M) is the system of generators to be computed. In the general case
the system of generators consists of Hilb(M) and finitely many points uy,...,u; € PN L such
that

N
PAL=|Juj+M.
j=1

The second main goal are enumerative data that depend on a grading of the ambient lattice.
Normaliz computes the Hilbert series and the Hilbert quasipolynomial of the monoid or set
of lattice points in a polyhedron. In combinatorial terminology: Normaliz computes Ehrhart



series and quasipolynomials of rational polyhedra. Via its offspring NmzIntegrate [11]], Nor-
maliz computes generalized Ehrhart series and Lebesgue integrals of polynomials over rational
polytopes.

The computation goals of Normaliz can be set by the user. In particular, they can be restricted
to subtasks, such as the lattice points in a polytope or the leading coefficient of the Hilbert
(quasi)polynomial.

Performance data of Normaliz can be found in [8]].

Acknowledgement. The development of Normaliz is currently supported by the DFG SPP
1489 “Algorithmische und experimentelle Methoden in Algebra, Geometrie und Zahlentheo-
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ric .

1.2. Platforms, implementation and access from other systems

Executables for Normaliz are provided for Mac OS, Linux and MS Windows. If the executa-
bles prepared cannot be run on your system, then you can compile Normaliz yourself (see
Section [10).

Normaliz is written in C++, and should be compilable on every system that has a GCC com-
patible compiler. It uses the standard packages Boost and GMP (see Section [I0). The paral-
lelization is based on OpenMP.

The executables provided by us use the integer optimization program SCIP [1] for certain
subtasks, but the inclusion of SCIP must be activated at compile time.

Normaliz consists of two parts: the front end normaliz for input and output and the C++ library
libnormaliz that does the computations.

Normaliz can be accessed from the following systems:

e SINGULAR via the library normaliz.lib,

MACAULAY 2 via the package Normaliz.m2,

CoCOA via an external library and libnormaliz,

GAP via the GAP package NORMALIZINTERFACE [12] which uses libnormaliz,
POLYMAKE (thanks to the POLYMAKE team),

SAGE via an optional package by A. Novoseltsev.

The Singular and Macaulay 2 interfaces are contained in the Normaliz distribution. At present,
their functionality is limited to Normaliz 2.10.

Furthermore, Normaliz is used by the B. Burton’s system REGINA.

1.3. Major changes relative to version 2.12

(1) A new, more comfortable input syntax (with backward compatibility).
(2) New input types, in particular generators for lattices.

(3) Free combination of input types.

(4) Improved linear algebra with much better protection against overflows.



(5) Automatic choice of integer type.

(6) Reduction of the arithmetical complexity by subdivision of large simplicial cones and
bottom decomposition based on SCIP and approximation methods.

(7) Improvement of Fourier-Motzkin elimination by ordering the generators.

(8) An improved programming interface.

(9) Massive parallelization on Intel Xeon Phi cards (experimental).

1.4. Future extensions

(1) Exploitation of symmetries.
(2) Access from further systems.
(3) Grobner and Graver bases.

1.5. Download and installation

Download
e the zip file with the Normaliz source, documentation, examples and further platform
independent components, and
e the zip file containing the executable(s) for your system

from the Normaliz website

http://www.math.uos.de/normaliz

and unzip both in the same directory of your choice. In it, a directory Normaliz3.0 (called
Normaliz directory in the following) is created with several subdirectories. (Some versions of
the Windows executables may need the installation of a runtime library; see our website.)

2. Normaliz by examples

2.1. Terminology

For the precise interpretation of parts of the Normaliz output some terminology is necessary,
but this section can be skipped at first reading, and the user can come back to it when it
becomes necessary. We will give less formal descriptions along the way.

As pointed out in the introduction, Normaliz “computes” intersections PN L where P is a
rational polyhedron in R? and L is an affine sublattice of Z¢. It proceeds as follows:

(1) If the input is inhomogeneous, then it is homogenized by introducing a homogenizing
coordinate: the polyhedron P is replaced by the cone C(P): it is the closure of R (P x
{1} in R4*!, Similarly L is replaced by L = Z(L x {1}). In the homogeneous case in
which P is a cone and L is a subgroup of Z¢, we set C(P) = P and L=L.
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(2) The computations take place in the efficient lattice
E = LNRC(P).

where RC(P) is the linear subspace generated by C(P). The internal coordinates are
chosen with respect to a basis of [E. The efficient cone is

C=Ri(C(P)NE).

(3) Inhomogeneous computations are truncated using the dehomogenization (defined im-
plicitly or explicitly).

(4) The final step is the conversion to the original coordinates. Note that we must use the
coordinates of R*! if homogenization has been necessary, simply because some output
vectors may be non-integral.

Normaliz computes inequalities, equations and congruences defining E and C. The output
contains only those constraints that are really needed. They must always be used jointly: the
equations and congruences define [E, and the equations and inequalities define C. Altogether
they define the monoid M = CNE. In the homogeneous case this is the monoid to be com-
puted. In the inhomogeneous case we must intersect M with the dehomogenizing hyperplane
to obtain PN L.

2.2. Practical preparations

You may find it comfortable to run Normaliz via the GUI jNormaliz [2]. In the Normaliz
directory open jNormaliz by clicking jNormaliz.jar in the appropriate way. (We assume that
Java is installed on your machine.) In the jNormaliz file dialogue choose one of the input files

eoe iNormaliz 1.7 - 3xdmagic.n
File Edit Normaliz Help

@ @ Aoorit.. Computation mode Precision
R Primal s DefaultMode s DefaultPrecision

Elapsed time: - Physical mem. (free/total): 13G/4.0C

Figure 1: jNormaliz

in the subdirectory example, say small.in, and press Run. In the console window you can
watch Normaliz at work. Finally inspect the output window for the results.



The menus and dialogues of jNormaliz are self explanatory, but you can also consult the
documentation [2]] via the help menu.

Moreover, one can, and often will, run Normaliz from the command line. This is fully ex-
plained in Section[5] At this point it is enough to call Normaliz by typing

normaliz -c <project>

where <project> denotes for the project to be computed. Normaliz will load the file project.in.
The option -c makes Normaliz to write a progress report on the terminal. Normaliz writes its
results to <project>.out.

Note that you may have to prefix normaliz by a path name, and <project> must contain a
path to the input file if it is not in the current directory. Suppose the Normaliz directory is the
current directory and we are using a Linux or Mac system. Then

./normaliz -c example/small

will run small.in from the directory example. On Windows we must change this to

.\normaliz -c example\small

The commands given above will run Normaliz with the full parallelization that your system
can deliver. For the very small examples in this tutorial you may want to add -x=1 to suppress
parallelization.

As long as you don’t specify a computation goal on the command line or in the input file,
Normaliz will use the default computation goals:

HilbertBasis
HilbertSeries
ClassGroup

The computation of the Hilbert series requires the explicit or implicit definition of a grading.
Normaliz does only complain that a computation goal cannot be reached if the goal has been
set explicitly. For example, if you say HilbertSeries and there is no grading, an exception
will be thrown and Normaliz terminates, but an output file with the already computed data will
be written.

Normaliz will always print the results that are obtained on the way to the computation goals
and do not require extra effort.

Appendix [B]helps you to read the console output that you have demanded by the option -c.

2.3. A cone in dimension 2

We want to investigate the cone C =R, (2,1) +R, (1,3) C R?:



This cone is defined in the input file 2cone. in:

amb_space 2
cone 2

21

13

The input tells Normaliz that the ambient space is R?, and then a cone with 2 generators is
defined, namely the cone C from above.

The figure indicates the Hilbert basis, and this is our first computation goal.

2.3.1. The Hilbert basis

In order to compute the Hilbert basis, we run Normaliz from jNormaliz or by

./normaliz -c example/2cone

and inspect the output file:

4 Hilbert basis elements
2 extreme rays
2 support hyperplanes

Self explanatory so far.

embedding dimension = 2

rank = 2 (maximal)

external index =1

internal index = 5

original monoid is not integrally closed

The embedding dimension is the dimension of the space in which the computation is done.
The rank is the rank of the lattice £ (notation as in Section . In fact, in our example E = 72,
and therefore has rank 2.

For subgroups G C U C Z? we denote the order of the torsion subgroup of U /G by the index
of G in U. The external index is the index of the lattice E in Z¢. In our case E = Z4, and
therefore the external index is 1. Note: the external index is 1 exactly when E is a direct

10



summand of Z.

For this example and many others the original monoid is well defined: the generators of the
cone used as input are contained in [E. (This need not be the case if E is a proper sublattice of
74, and we let the original monoid undefined in inhomogeneous computations.) Let G be the
subgroup generated by the original monoid. The internal index is the index of G in E.

The original monoid is integrally closed if and only if the it contains the Hilbert basis, and this
is evidently false for our example. We go on.

size of triangulation 1

resulting sum of |det]|s

The primal algorithm of Normaliz relies on a (partial) triangulation. In our case the triangula-
tion consists of a single simplicial cone, and (the absolute value of) its determinant is 5.

No implicit grading found

If you do not define a grading explicitly, Normaliz tries to find one itself: It is defined if and
only if there is a linear form 7y on [E under which all extreme rays of the efficient cone C have
value 1, and if so, Y is the implicit grading. Such does not exist in our case.

The last information before we come to the vector lists:

rank of class group = 0
finite cyclic summands:
5: 1

The class group of the monoid M has rank 0, in other words, it is finite. It has one finite cyclic
summand of order 5.

This is the first instance of a multiset of integers displayed as a sequence of pairs
<n>:. <m>
Such an entry says: the multiset contains the number <n> with multiplicity <m>.

Now we look at the vector lists (typeset in two columns to save space):

4 Hilbert basis elements: 2 extreme rays:

11 13

12 21

13

21 2 support hyperplanes:
-1 2
3 -1

The support hyperplanes are given by the linear forms (or inner normal vectors):

—x1+2x >0,
3X1 — X2 Z 0.

11



If the order is not fixed for some reason, Normaliz sorts vector lists as follows : (1) by degree
if a grading exists and the application makes sense, (2) lexicographically.

2.3.2. The cone by inequalities

Instead by generators, we can define the cone by the inequalities just computed (2cone_ineq. in):

amb_space 2
inequalities 2
-1 2

3 -1

A matrix of input type inequalities contains homogeneous inequalities.

We get the same result as with 2cone. in except that the data depending on the original monoid
cannot be computed: the internal index and the information on the original monoid are missing
since there is no original monoid.

2.3.3. The interior

Now we want to compute the lattice points in the interior of our cone. If the cone C is given
by the inequalities A;(x) > 0 (within aff(C)), then the interior is given by the inequalities
Ai(x) > 0. Since we are interested in lattice points, we work with the inequalities A;(x) > 1.

The input file 2cone_int.in says

amb_space 2
strict_inequalities 2
-1 2

3 -1

The strict inequalities encode the conditions

—x1+2x > 1,
3x1 —xp > 1.

This is our first example of inhomogeneous input.

12



Normaliz homogenizes inhomogeneous computations by introducing an auxiliary homogeniz-
ing coordinate x4, 1. The polyhedron is obtained by intersecting the homogenized cone with
the hyperplane x; .| = 1. The recession cone is the intersection with the hyperplane x;, | = 0.
The recession monoid is the monoid of lattice points in the recession cone, and the set of lattice
points in the polyhedron is represented by its system of module generators over the recession
monoid.

Note that the homogenizing coordinate serves as the denominator for rational vectors. In our
example the recession cone is our old friend that we have already computed, and therefore we
need not comment on it.

2 module generators

4 Hilbert basis elements of recession monoid
1 vertices of polyhedron

2 extreme rays of recession cone

2 support hyperplanes of polyhedron

embedding dimension = 3
affine dimension of the polyhedron = 2 (maximal)
rank of recession monoid = 2

The only surprise may be the embedding dimension: Normaliz always takes the dimension
of the space in which the computation is done. It is the number of components of the output
vectors. Because of the homogenization it has increased by 1.

1
25

size of triangulation
resulting sum of |det]|s

In this case the homogenized cone has stayed simplicial, but the determinant has changed.

dehomogenization:
001

The dehomogenization is the linear form & on the homogenized space that defines the hyper-
planes from which we get the polyhedron and the recession cone by the equations 6 (x) = 1
and 6 (x) = 0, respectively. It is listed since one can also work with a user defined dehomoge-
nization.

module rank =1

This is the rank of the module of lattice points in the polyhedron over the recession monoid.
In our case the module is an ideal, and so the rank is 1.

The output of inhomogeneous computations is always given in homogenized form. The last
coordinate is the value of the dehomogenization on the listed vectors, 1 on the module gener-
ators, 0 on the vectors in the recession monoid:

2 module generators: 4 Hilbert basis elements of recession monoid:
111 110
121 120

13



130
210

The module generators are (1,1) and (1,2).

1 vertices of polyhedron:
345

Indeed, the polyhedron has a single vertex, namely (3/5,4/5).

2 extreme rays of recession cone: 2 support hyperplanes of polyhedron:
130 -1 2 -1
210 3-1-1

The support hyperplanes are exactly those that we have used to define the polyhedron. This is
obvious in our example, but need not always be true since one or more of the defining input
hyperplanes may be superfluous.

2.4. A lattice polytope

The file polytope.in contains

amb_space 4
polytope 4
000
200
030
005

The Ehrhart monoid of the integral polytope with the 4 vertices
(0,0,0), (2,0,0), (0,3,0) and (0,0,5)

in R? is to be computed. The generators of the Ehrhart monoid are obtained by attaching a
further coordinate 1 to the vertices, and this explains amb_space 4. In fact, the input type
polytope is nothing but a convenient (perhaps superfluous) version of

amb_space 4
cone 4
0001
2001
0301
0051

Running normaliz produces the file polytope.out:

19 Hilbert basis elements
18 Hilbert basis elements of degree 1

14



4 extreme rays
4 support hyperplanes

embedding dimension = 4

rank = 4 (maximal)

external index =1

internal index = 30

original monoid is not integrally closed

Perhaps a surprise: the lattice points of the polytope do not yield all Hilbert basis elements.

1
30

size of triangulation
resulting sum of |det]|s

Nothing really new so far. But now Normaliz finds a grading given by the last coordinate. See
below for general information on gradings.

grading:
06001

degrees of extreme rays:
1: 4

Again we encounter the notation <n>: <m>: we have 4 extreme rays, all of degree 1.

Hilbert basis elements are not of degree 1

Perhaps a surprise: the polytope is not integrally closed as defined in [4]. Now we see the
enumerative data defined by the grading:

multiplicity = 30

Hilbert series:

114 15

denominator with 4 factors:

1: 4

degree of Hilbert Series as rational function = -2

Hilbert polynomial:
1485
with common denominator =1

The polytope has Z3-normalized volume 30 as indicated by the multiplicity. The Hilbert
(or Ehrhart) function counts the lattice points in kP, k € Z. The corresponding generating
function is a rational function H (¢). For our polytope it is

1+ 14¢ + 15¢2
(1—1)*

15




The denominator is given in multiset notation: 1: 4 say that the factor (1 —¢') occurs with
multiplicity 4.

The Ehrhart polynomial (again we use a more general term in the output file) of the polytope
is
p(k) = 144k + 8k> + 5k° .

In our case it has integral coefficients, a rare exception. Therefore one usually needs a denom-
inator.

Everything that follows has already been explained.

rank of class group = 0
finite cyclic summands:
30: 1

>k 3K 3K 5k >k 5k 3K 5k 3K K 3K 3k 3k 3k 5k 3k ok K 5k >k ok >k 5k >k 5k K k3K K 3K 3k 3k 3k ok 3k ok >k ok >k ok >k Sk K Sk K k3K K 3k 3k ok 3k ok koK >k ok >k ok Rk Kk Kk K kokkok >k

18 Hilbert basis elements of degree 1:
0001

2001

=

further Hilbert basis elements of higher degree:
242

=

4 extreme rays: 4 support hyperplanes:
0001 -15 -10 -6 30

0051 0
0301 0
2001 1

o R o
[c RN oI
[clN ol O]

The support hyperplanes give us a description of the polytope by inequalities: it is the solution
of the system of the 4 inequalities

x3>>0, x>0, x>0 and 15x;+ 10x; + 6x3 < 30.

2.4.1. Only the lattice points

Suppose we want to compute only the lattice points in our polytope. In the language of
graded monoids these are the degree 1 elements, and so we add DeglElements to our input file
(polytope_degl.in):

amb_space 4
polytope 4
000
200
030

16



005
DeglElements
/* This is our first explicit computation goalx/

We have used this opportunity to include a comment in the input file.

We lose all information on the Hilbert series, and from the Hilbert basis we only retain the
degree 1 elements.

2.5. A rational polytope

Normaliz has no special input type for rational polytopes. In order to process them one uses
the type cone together with a grading. Suppose the polytope is given by vertices

vi=(rit,---,rid), i=1,....m, rj;€Q.

Then we write v; with a common denominator:
Pi1 Pid
Vi = <—l,~-,—l), Pijqi € Z, q; > 0.
qi qi
The generator matrix is given by the rows
%:(pilw"?pid?q»a lzlaam

We must add a grading since Normaliz cannot recognize it without help (unless all the ¢; are
equal to 1). The grading linear form has coordinates (0,...,0,1).

We want to investigate the Ehrhart series of the triangle P with vertices

(1/2,1/2), (—1/3,—1/3), (1/4,—1/2).

For this example the procedure above yields the input file rational.in:

amb_space 3
cone 3

112

-1 -13
1-214
grading
unit_vector 3
HilbertSeries

17



This is the first time that we used the shortcut unit_vector <n> which represents the nth unit
vector ¢, € R? and is only allowed for input types which require a single vector.

From the output file we only list the data of the Ehrhart series.

multiplicity = 5/8

Hilbert series:
10032-12211112
denominator with 3 factors:
1:'1 2:1 12: 1

degree of Hilbert Series as rational function = -3
Hilbert series with cyclotomic denominator:

-1 -1-1-3 -4 -3 -2

cyclotomic denominator:

1: 3 2: 2 3:1 4:1

Hilbert quasi-polynomial of period 12:

0: 48 28 15 7: 23 22 15

1: 11 22 15 8: 16 28 15

2: -20 28 15 9: 27 22 15

3: 39 22 15 10: -4 28 15

4: 32 28 15 11: 7 22 15

5: -5 22 15 with common denominator = 48
6: 12 28 15

The multiplicity is a rational number. Since in dimension 2 the normalized area (of full-
dimensional polytopes) is twice the Euclidean area, we see that P has Euclidean area 5/16.

Unlike in the case of a lattice polytope, there is no canonical choice of the denominator of the
Ehrhart series. Normaliz gives it in 2 forms. In the first form the numerator polynomial is

143823 420 =P 42600 4267 + 18 142 4410 11 4 0412

and the denominator is

(1—0)(1—22)(1—1¢"2).
As a rational function, H(¢) has degree —3. This implies that 3P is the smallest integral
multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of coprime polynomials with the denomi-
nator factored into cyclotomic polynomials. In this case we have

141412413 +46* 436 + 266
HeleYe

where ; is the i-th cyclotomic polynomial (§; =t —1, 6=t +1, =12 +14+1, L =12+ 1).

H(t) =
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Normaliz transforms the representation with cyclotomic denominator into one with denomi-
nator of type (1 —#¢1)--- (1 —1¢°), r = rank, by choosing e, as the least common multiple of
all the orders of the cyclotomic polynomials appearing, ¢, as the lcm of those orders that
have multiplicity > 2 etc.

There are other ways to form a suitable denominator with 3 factors 1 —¢¢, for example g(¢) =
(1 =)0 —=3)(1 —1*) = =P E3 38 Of course, g(t) is the optimal choice in this case.
However, P is a simplex, and in general such optimal choice may not exist. We will explain
the reason for our standardization below.

Let p(k) be the number of lattice points in kP. Then p(k) is a quasipolynomial:
(k) = po(k) + pr(k)k+ -+ + pry (k)K"

where the coefficients depend on &, but only to the extent that they are periodic of a certain
period 7 € N. In our case © = 12 (the lcm of the orders of the cyclotomic polynomials).

The table giving the quasipolynomial is to be read as follows: The first column denotes the
residue class j modulo the period and the corresponding line lists the coefficients p;(j) in
ascending order of i, multiplied by the common denominator. So

7 5, B
plk)=1+ Gkt 1k k=0 (12),

etc. The leading coefficient is the same for all residue classes and equals the Euclidean volume.

Our choice of denominator for the Hilbert series is motivated by the following fact: e; is the
common period of the coefficients p,_;,...,p,—1. The user should prove this fact or at least
verify it by several examples.

Warning: It is tempting, but not a good idea to define the polytope by the input type vertices.
It would make Normaliz compute the lattice points in the polytope, but not in the cone over
the polytope, and we need these to determine the Ehrhart series.

2.5.1. The rational polytope by inequalities

We extract the support hyperplanes of our polytope from the output file and use them as input
(poly_ineq.in):

amb_space 3
inequalities 3
-8 23

1-10

2 73

grading
unit_vector 3
HilbertSeries

19



These data tell us that the polytope, as a subset of R?, is defined by the inequalities

—8x1+2x+3 >0,
X1 _-x2+0207
2x1+7x+3>0.

These inequalities are inhomogeneous, but we are using the homogeneous input type inequalities
which amounts to introducing the grading variable x3, as we have done it for the generators.

Why don’t we define it by the “natural” inhomogeneous inequalities using inhom_inequalities?
We could do it, but then only the polytope itself would be the object of computation, and we
would have no access to the Ehrhart series. We could just compute the lattice points in the
polytope. (Try it.)

2.6. Magic squares

Suppose that you are interested in the following ‘type of ‘square”

X1 | X2 | X3
X4 | X5 | Xg
X7 | X8 | X9
and the problem is to find nonnegative values for xp, .. .,x9 such that the 3 numbers in all rows,

all columns, and both diagonals sum to the same constant .#. Sometimes such squares are
called magic and .# is the magic constant. This leads to a linear system of equations

X1 +x0+x3 =x4+x5+x6;
X1+ X2 +Xx3 = X7 + X8 +Xo;
X1 +Xx2 +Xx3 = X1 +X4 +X7;
X1 +x0+x3 =xp+x5+x3;
X1+ X2 + X3 = X3 + X6 + Xo;
X1 +X2 +X3 = X1 + X5 +X9;
X1 +x0 +x3 =x3+x5+x7.

This system is encoded in the file 3x3magic.in:

amb_space 9

equations 7

111-1-1-1 06 0 0
111 06 06 0 -1-1-1
011-1 0 06-1 0 0
101 0-1 0 06-1 0
1106 0 06-1 0 0 -1
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611 06-1 06 0 0-1
110 0-1 6-1 0 0
grading
111000000

The input type equations represents homogeneous equations. The first equation reads

X1 +xX+x3—x4 —x5—x6 =0,
and the other equations are to be interpreted analogously. The magic constant is a natural
choice for the grading.

It seems that we have forgotten to define the cone. This may indeed be the case, but doesn’t
matter: if there is no input type that defines a cone, Normaliz chooses the positive orthant, and
this is exactly what we want in this case.

The output file contains the following:

5 Hilbert basis elements

5 Hilbert basis elements of degree 1
4 extreme rays

4 support hyperplanes

embedding dimension = 9
rank = 3
external index =1

size of triangulation
resulting sum of |det|s

1]
AN

grading:
111000000
with denominator = 3

The input degree is the magic constant. However, as the denominator 3 shows, the magic
constant is always divisible by 3, and therefore the effective degree is .# /3. This degree is
used for the multiplicity and the Hilbert series.

degrees of extreme rays:
1: 4

Hilbert basis elements are of degree 1

This was not to be expected (and is no longer true for 4 x 4 squares).

multiplicity = 4

Hilbert series:
121
denominator with 3 factors:
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degree of Hilbert Series as rational function = -1

Hilbert polynomial:
122
with common denominator =1

The Hilbert series is
142t +12

(1—=2)°
The Hilbert polynomial is
P(k) = 1+2k 4242,

and after substituting .# /3 for k we obtain the number of magic squares of magic constant
A , provided 3 divides .#. (If 3 1 ./, there is no magic square of magic constant .#.)

rank of class group =1
finite cyclic summands:
2: 2

So the class group is Z @ (Z/27)?.

5 Hilbert basis elements of degree 1:
021210102
102210021
111111111
120012201
201012120

0 further Hilbert basis elements of higher degree:

The 5 elements of the Hilbert basis represent the magic squares

2101 1102 1|1]1 1]2
1]2 21110 1|1 1
112]0 0]2]1 1|1]1 210

All other solutions are linear combinations of these squares with nonnegative integer coeffi-

cients. One of these 5 squares is clearly in the interior:

211
10
012

4 extreme rays: 4 support hyperplanes:
021210102 -2 -100 40000
102210021 0-100 20000
120012201 0O 100 00000
201012120 2 100-20000

These 4 support hyperplanes cut out the cone generated by the magic squares from the linear
subspace they generate. Only one is reproduced as a sign inequality. This is due to the fact that
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the linear subspace has submaximal dimension and there is no unique lifting of linear forms
to the full space.

6 equations: 3 basis elements of lattice:
10000 1-2-1 1 10-1-206 2 1 0-1
01000 1-2 0 0 01-1-106 1 1-1 0
0010600 1-1-1 0 006 3 41-2-1 2 2
006010 -1 2 0-2

0061 -1 1 0-1

00000 3-4-1 2

So one of our equations has turned out to be superfluous (why?). Note that also the equations
are not reproduced exactly. Finally, Normaliz lists a basis of the efficient lattice £ generated
by the magic squares.

2.6.1. With even corners

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file by the following (3x3magiceven.in):

congruences 4

1000000002
0010000002
0000O00OO1OO2
00000000612

The first 9 entries in each row represent the coefficients of the coordinates in the homogeneous
congruences, and the last is the modulus:

x1=0 mod2

is the first congruence etc.

The output changes accordingly:

9 Hilbert basis elements

0 Hilbert basis elements of degree 1
4 extreme rays

4 support hyperplanes

embedding dimension = 9
rank = 3
external index = 4

size of triangulation
resulting sum of |det]|s

1}
o N

grading:
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111000000
with denominator = 3

degrees of extreme rays:
2: 4

multiplicity =1

Hilbert series:

1-131

denominator with 3 factors:

1:' 1 2: 2

degree of Hilbert Series as rational function = -2

Hilbert series with cyclotomic denominator:

-11 -3 -1
cyclotomic denominator:
1: 3 2: 2

Hilbert quasi-polynomial of period 2:
0: 221

1: -101

with common denominator = 2

After the extensive discussion in Section[2.5]it should be easy for you to write down the Hilbert
series and the Hilbert quasipolynomial. (But keep in mind that the grading has a denominator.)

rank of class group =1
finite cyclic summands:
4: 2

>k 3k 3k >k 5k 3K 3k >k 5k K >k sk 5k K >k 5k 3K 3k >k 5k K >k >k 5k K >k 5k 3K >k >k 5k K >k >k 3K >k >k 5k K >k >k 5k K >k >k 3K >k >k 5K K >k >k 3K >k >k 5k 3K >k >k 5k K >k >k 3k % >k >k >k % >k >k
0 Hilbert basis elements of degree 1:

9 further Hilbert basis elements of higher degree:

extreme rays:

42420204

04420042

40024402
02024240

A NN O B

We have listed the extreme rays since they have changed after the introduction of the congru-
ences, although the cone has not changed. The reason is that Normaliz always chooses the
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extreme rays from the efficient lattice E.

4 support hyperplanes:

6 equations:
3 basis elements of lattice:
20 -2-40 4 20 -2
2 congruences: 01 2 31-1 01 2
1000000002 00 6 82 -4-24 4
0100100002

The rank of the lattice has of course not changed, but after the introduction of the congruences

the basis has changed.

2.6.2. The lattice as input

It is possible to define the lattice by generators. We demonstrate this for the magic squares

with even corners. The lattice has just been computed (3x3magiceven_lat.in):

amb_space 9

lattice 3

20 -2-40 4 20 -2
1 2 31-1 01 2
00 6 82 -4-24 4
grading
111000000

It produces the same output as the version starting from equations and congruences.

lattice has a variant that takes the saturation of the sublattice generated by the input vectors

(3x3magic_sat.in):

amb_space 9

saturation 3

20 -2-40 4 20 -2
61 2 31-1 01 2
00 6 82 -4-24 4
grading
111000000

Clearly, we remove the congruences by this choice and arrive at the output of 3x3magic.in.
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2.7. Decomposition in a numerical semigroup

Let S = (6,10, 15), the numerical semigroup generated by 6,10, 15. How can 97 be written as
a sum in the generators?

In other words: we want to find all nonnegative integral solutions to the equation

6x1 4+ 10x2 + 15x3 =97

Input (NumSemi.in):

amb_space 3
inhom_equations 1
6 10 15 -97

The equation cuts out a triangle from the positive orthant.

The set of solutions is a module over the monoid M of solutions of the homogeneous equation
6x1 4+ 10x; +15x3 = 0. So M = 0.

6 module generators:
2151
243
271
713
741
12111

1
1
1
1

0 Hilbert basis elements of recession monoid:

The last line is as expected, and the 6 module generators are the goal of the computation.

Normaliz is smart enough to recognize that it must compute the lattice points in a polygon,
and does exactly this. You can recognize it in the console output: it contains the line

Converting polyhedron to polytope

2.8. A job for the dual algorithm

We increase the size of the magic squares to 5 x 5. Normaliz can do the same computation
as for 3 x 3 squares, but this will take some minutes. If we are only interested in the Hilbert
basis, we should use the dual algorithm for this example. The input file is 5x5dual. in:

amb_space 25
equations 11
11111-1-1-1-1-1 0 6 0 6 0 6 0 06 0 06 0 06 0 0 0O

111106 0 0 0-1 6 6 6-1 0 6 0-1 6 6 6-1 06 06 0 O
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DualMode
grading
1111100000000000000000000

The choice of the dual algorithm implies the computation goal HilbertBasis. By adding
DeglElements we could restrict the computation to the degree 1 elements.

The Hilbert basis contains 4828 elements, too many to be listed here.

If you want to run this example with default computation goals, use the file 5x5.in. It will
compute the Hilbert basis and the Hilbert series.

The size 6 x 6 is out of reach for the Hilbert series, but the Hilbert basis can be computed in
dual mode. It takes some hours.

2.9. A dull polyhedron

We want to compute the polyhedron defined by the inequalities

&>—1/2 — 081 +26+1>0
& <3/2 — 0 —265+43>0
& <& +3/2 — 28 —2&5+3>0

They are contained in the input file InhomIneq.in:

amb_space 2
inhom_inequalities 3
06 2 1

0 -2 3

2 -2 3

grading

unit_vector 1

The grading says that we want to count points by the first coordinate.

It yields the output

2 module generators

1 Hilbert basis elements of recession monoid
2 vertices of polyhedron

1 extreme rays of recession cone
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3 support hyperplanes of polyhedron

embedding dimension = 3
affine dimension of the polyhedron = 2 (maximal)
rank of recession monoid = 1

size of triangulation
resulting sum of |det]|s

Il
0

dehomogenization:
001

grading:
100

The interpretation of the grading requires some care in the inhomogeneous case. We have
extended the input grading vector by an entry O to match the embedding dimension. For the
computation of the degrees of lattice points in the ambient space you can either use only the
first 2 coordinates or take the full scalar product of the point in homogenized coordinates and
the extended grading vector.

module rank = 2
multiplicity = 2

The module rank is 2 in this case since we have two “layers” in the solution module that are
parallel to the recession monoid. This is of course also reflected in the Hilbert series.

Hilbert series:

11

denominator with 1 factors:
1: 1

shift = -1

We haven’t seen a shift yet. It is always printed (necessarily) if the Hilbert series does not start
in degree 0. In our case it starts in degree —1 as indicated by the shift —1. We thus get the
Hilbert series

t+r 4

LD T =

Note: We used the opposite convention for the shift in Normaliz 2.

Note that the Hilbert (quasi)polynomial is always computed for the unshifted monoid defined
by the input data. (This was different in previous versions of Normaliz.)

degree of Hilbert Series as rational function = -1

Hilbert polynomial:
2
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with common denominator =1

>k 3K 3K 5k 3K 5k K 3k 3K 3k 3K 3k 3K 3k 3K 3k 5k 3k 5k 3k 5k K 5k K 5k K 3k 3K K 3K 3k 3K 3k 5K 3k 5k 3k 5k >k 5k >k 5k K 5k K 5k 3K K 3K 3k 3k 3k 5k K oK K oKk R ok K sk Kk Kk Kk Kk ok >k

2 module generators:
-101
0611

1 Hilbert basis elements of recession monoid:
100

2 vertices of polyhedron:
-4 -1 2
0 32

extreme rays of recession cone:
00

=

support hyperplanes of polyhedron:
-2 3
21
-2 3

N © © W

2.9.1. Defining it by generators

If the polyhedron is given by its vertices and the recession cone, we can define it by these data
(InhomIneqg_gen.in):

amb_space 2
vertices 2

-4 -1 2

0 32

cone 1

10

grading
unit_vector 1

The output is identical to the version starting from the inequalities.

2.10. The Condorcet paradoxon

In social choice elections each of the k voters picks a preference order of the n candidates.
There are n! such orders.

We say that candidate A beats candidate B if the majority of the voters prefers A to B. As the
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Marquis de Condorcet (and others) observed, “beats” is not transitive, and an election may
exhibit the Condorcet paradoxon: there is no Condorcet winner. (See [[10] and the references
given there for more information.)

We want to find the probability for k — o that there is a Condorcet winner for n = 4 candidates.
The event that A is the Condorcet winner can be expressed by linear inequalities on the election
outcome (a point in 24-space). The wanted probability is the lattice normalized volume of the
polytope cut out by the inequalities at k = 1. The file Condorcet.in:

amb_space 24

inequalities 3

1111117-17-1-1-1-1-1 1 1-1-1 1-1 1 1-1-1 1-1
111111 1 1-1-1 1-1 -1-1-1-1-1-1 1 1 1-1-1-1
11111171 11-1-1-1 11 1-1-1-1 -1-1-1-1-1-1
nonnegative

total_degree

Multiplicity

The first inequality expresses that A beats B, the second and the third say that A beats C and
D. (So far we do not exclude ties, and they need not be excluded for probabilities as k — oo.)

In addition to these inequalities we must restrict all variables to nonnegative values, and this
is achieved by adding the attribute nonnegative. The grading is set by total _degree. It
replaces the grading vector with 24 entries 1. Finally Multiplicity sets the computation
goal.

From the output file we only mention the quantity we are out for:

multiplicity = 1717/8192

Since there are 4 candidates, the probability for the existence of a Condorcet winner is 1717 /2048.

We can refine the information on the Condorcet paradoxon by computing the Hilbert series.
Either we delete Multiplicity from the input file or, better, we add --HilbertSeries (or
simply -q) on the command line. The result:

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6
denominator with 24 factors:

1:'1 2: 14 4: 9

degree of Hilbert Series as rational function = -25

2.10.1. Excluding ties

Now we are more ambitious and want to compute the Hilbert series for the Condorcet para-
doxon, or more precisely, the number of election outcomes having A as the Condorcet winner
depending on the number & of voters. Moreover, as it is customary in social choice theory, we
want to exclude ties. The input file changes to CondorcetSemi.in:
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amb_space 24

excluded_faces 3

111111-17-17-12-12-1-1 1 1-1-11-1 1 1-1-1 1-1
1117111 11-1-11-1 -1-1-1-1-1-1 1 1 1-1-1-1
111111 111-1-1-1 111-1-1-1 -1-1-1-1-1-1
nonnegative

total_degree

HilbertSeries

We could omit HilbertSeries, and the computation would include the Hilbert basis. The
type excluded_faces only affects the Hilbert series. In every other respect it is equivalent to
inequalities.

From the file CondorcetSemi.out we only display the Hilbert series:

Hilbert series:

6 15 481 890 12346 ... 100915 69821 8655 4581 363 133 51
denominator with 24 factors:

1:'1 2: 14 4: 9

shift =1

degree of Hilbert Series as rational function = -24

Surprisingly, this looks like the Hilbert series in the previous section read backwards, roughly
speaking. This is true, and one can explain it as we will see below.

It is justified to ask why we don’t use strict_inequalities instead of excluded_faces.
It does of course give the same Hilbert series. If there are many excluded faces, then it is
better to use strict_inequalities. However, at present Nmzlntegrate can only work with
excluded_faces.

2.10.2. At least one vote for every preference order

Suppose we are only interested in elections in which every preference order is chosen by at
least one voter. This can be modeled as follows (Condorcet_one. in):

amb_space 24

inequalities 3

111111-1-1-1-1-1-1 1 1-1-1 1-1 1 1-1-1 1-1
1111111 1-1-1 1-1 -1-1-1-1-1-1 1 1 1-1-1-1
111111 1 1 1-1-1-1 11 1-1-1-1 -1-1-1-1-1-1
strict_signs

111111111111111111111111

total_degree

HilbertSeries
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The entry 1 at position i of the vector strict_signs imposes the inequality x; > 1. A —1 would
impose the inequality x; < —1, and the entry O imposes no condition on the i-th coordinate.

Hilbert series:

1 5 133 363 4581 8655 69821 100915 ... 12346 890 481 15 6
denominator with 24 factors:

1:'1 2: 14 4: 9

shift = 24

degree of Hilbert Series as rational function = -1

Again we encounter (almost) the Hilbert series of the Condorcet paradoxon (without side
conditions). It is time to explain this coincidence. Let C be the Condorcet cone defined by
the nonstrict inequalities, M the monoid of lattice points in it, Iy C M the ideal of lattice
points avoiding the 3 facets defined by ties, /> the ideal of lattice points with strictly positive
coordinates, and finally I3 the ideal of lattice points in the interior of C. Moreover, let 1 € Z*
be the vector with all entries 1.

Since 1 lies in the three facets defining the ties, it follows that I, = M + 1. This explains why
we obtain the Hilbert series of I, by multiplying the Hilbert series of M by #**, as just observed.
Generalized Ehrhart reciprocity (see [4, Theorem 6.70]) then explains the Hilbert series of I
that we observed in the previous section. Finally, the Hilbert series of /3 that we don’t have
displayed is obtained from that of M by “ordinary” Ehrhart reciprocity. But we can also obtain
I from I3: I} = Iz — 1, and generalized reciprocity follows from ordinary reciprocity in this
very special case.

The essential point in these arguments (apart from reciprocity) is that 1 lies in all support
hyperplanes of C except the coordinate hyperplanes.

You can easily compute the Hilbert series of I3 by making all inequalities strict.

2.11. Testing normality

We want to test the monoid A4«4x3 defined by 4 x 4 x 3 contingency tables for normality (see
[S] for the background). The input file is A443.1in:

amb_space 40
cone_and_lattice 48
1000000000000 000D10000000DODOD0OD0O010O00O00ODOODODO0O0OOO

0000000 OODOOOLOODO1OODODOOOODOOOLOON1OOOODOOOLOODOOTIL
HilbertBasis

Why cone_and_lattice? Well, we want to find out whether the monoid is normal, i.e.,
whether M = C(M) Ngp(M). If M is even integrally closed in Z?*, then it is certainly inte-
grally closed in the evidently smaller lattice gp(M), but the converse does not hold in general,
and therefore we work with the lattice generated by the monoid generators.
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It turns out that the monoid is indeed normal:

original monoid is integrally closed

Actually the output file reveals that M is even integrally closed in Z?*: the external index is 1,
and therefore gp(M) is integrally closed in Z>*.

The output files also shows that there is a grading on Z>* under which all our generators have
degree 1. We could have seen this ourselves: Every generator has exactly one entry 1 in the
first 16 coordinates. (This is clear from the construction of M.)

A noteworthy detail from the output file:

size of partial triangulation = 48

It shows that Normaliz uses only a partial triangulation in Hilbert basis computations; see [S].

It is no problem to compute the Hilbert series as well if you are interested in it. Simply add -q

to the command line or remove HilberBasis from the input file. Then a full triangulation is
needed (size 2,654,272).

Similar examples are A543, A553 and A643. The latter is not normal. Even on a standard PC
or laptop, the Hilbert basis computation does not take very long because Normaliz uses only a
partial triangulation. The Hilbert series can still be determined, but the computation time will
grow considerably since the it requires a full triangulation. See [8]] for timings.

2.12. Inhomogeneous congruences

We want to compute the nonnegative solutions of the simultaneous inhomogeneous congru-
ences

x1+20=3 (7),
2x1+2x =4 (13)

in two variables. As usual we move the right hand side over to the left. The input file
InhomCong.inis

amb_space 2
inhom_congruences 2
12-37

22 -413

The first vector list in the output:

3 module generators:
0541

1 11
80 01

Easy to check: if (1,1) is a solution, then it must generate the module of solutions together
with the generators of the intersections with the coordinate axes. Perhaps more difficult to
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find:

6 Hilbert basis elements of recession monoid:
0910

1 38
323
5 8
12 1
91 0

1 vertices of polyhedron:
0 091

o O © © ©

Strange, why is (0,0, 1), representing the origin in R?, not listed as a vertex as well? Well the

vertex shown represents an extreme ray in the lattice IE, and (0,0, 1) does not belong to E.

2 extreme rays of recession cone:
0910
91 0 0

2 support hyperplanes of polyhedron:
010
100

1 congruences:
58 32 1 91

Normaliz has simplified the system of congruences to a single one.

3 basis elements of lattice:
10 33
01 -32
060 91

Again, don’t forget that Normaliz prints a basis of the efficient lattice E.

2.12.1. Lattice and offset

The set of solutions to the inhomogeneous system is an affine lattice in R?. The lattice basis
of [E above does not immediately let us write down the set of solutions in the form w+ Ly with
a subgroup L, but we can easily transform the basis of [E: just add the first and the second
vector to obtain (1,1, 1) — we already know that it belongs to E and any element in E with last

coordinate 1 would do. Try the file InhomCongLat.in:

amb_space 2
offset

11

lattice 2
32 33

91 91
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2.12.2. Variation of the signs

Suppose we want to solve the system of congruences under the condition that both variables
are negative (InhomCongSigns.in):

amb_space 2
inhom_congruences 2
12 -37

22 -413

signs

-1 -1

The two entries of the sign vector impose the sign conditions x; < 0 and x, < 0.

From the output we see that the module generators are more complicated now:

4 module generators:
-11 01

-4 -71

-2 -221

0 -37 1

The Hilbert basis of the recession monoid is simply that of the nonnegative case multiplied by
—1.

2.13. Integral closure and Rees algebra of a monomial ideal

Next, let us discuss the example MonIdeal.in (typeset in two columns):

amb_space 5

rees_algebra 9

1212 10314
3113 5101
2510 2415
0243 2224
0234

The input vectors are the exponent vectors of a monomial ideal [ in the ring K[X,X>, X3, X4].
We want to compute the normalization of the Rees algebra of the ideal. In particular we can
extract from it the integral closure of the ideal. Since we must introduce an extra variable T,
we have amb_space 5.

In the Hilbert basis we see the exponent vectors of the X;, namely the unit vectors with last
component 0. The vectors with last component 1 represent the integral closure / of the ideal.

There is a vector with last component 2, showing that the integral closure of I? is larger than .

16 Hilbert basis elements:
00010
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51011
65222

11 generators of integral closure of the ideal:
0234

5101

The output of the generators of I is the only place where we suppress the homogenizing vari-
able for “historic” reasons. If we extract the vectors with last component 1 from the extreme
rays, then we obtain the smallest monomial ideal that has the same integral closure as /.

10 extreme rays:
00010

51011

The support hyperplanes which are not just sign conditions describe primary decompositions
of all the ideals I¥ by valuation ideals. It is not hard to see that none of them can be omitted for

large k (for example, see: W. Bruns and G. Restuccia, Canonical modules of Rees algebras. J.
Pure Appl. Algebra 201, 189-203 (2005)).

23 support hyperplanes:

000 06 1
0 ...
601 3-13

2.13.1. Only the integral closure

If only the integral closure of the ideal is to be computed, one can choose the input as follows
(IntCWMonId.in):

amb_space 4
vertices 9
12121
22241
cone 4
1000
0100

0010
0001

The generators of the integral closure appear as module generators in the output and the gen-
erators of the smallest monomial ideal with this integral closure are the vertices of the polyhe-
dron.
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2.14. Only the convex hull

Normaliz computes convex hulls as should be very clear by now, and the only purpose of
this section is to emphasize that the computation can be restricted to it by setting an explicit
computation goal. We choose the input of the preceding section and add the computation goal
(IntCWMonIdSupp.in):

amb_space 4
vertices 9
12121
22241

vertices

cone 4

1000

0001
SupportHyperplanes

As you can see from the output, the support hyperplanes of the polyhedron are computed as
well as the extreme rays.
2.15. Starting from a binomial ideal
As an example, we consider the binomial ideal generated by
X{Xy — X4X5Xs, X1X7 — X3X5X, X1X2X3 — X2 Xg.

We want to find an embedding of the toric ring it defines and the normalization of the toric
ring. The input vectors are obtained as the differences of the two exponent vectors in the
binomials. So the input ideal lattice_ideal.inis

amb_space 6

lattice_ideal 3
21 0-1-1 -1
10-1 2-1 -1
11 1 0 -2 -1

In order to avoid special input rules for this case in which our object is not defined as a
subset of an ambient space, but as a quotient of type generators/relations, we abuse the name
amb_space: it determines the space in which the input vectors live.

We get the output

6 original generators of the toric ring

namely the residue classes of the indeterminates.
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9 Hilbert basis elements
9 Hilbert basis elements of degree 1

So the toric ring defined by the binomials is not normal. Normaliz found the standard grading
on the toric ring. The normalization is generated in degree 1, too (in this case).

5 extreme rays
5 support hyperplanes

embedding dimension = 3

rank = 3 (maximal)

external index =1

internal index =1

original monoid is not integrally closed

We saw that already.

size of triangulation =5
resulting sum of |det|s = 10
grading:

211

This is the grading on the ambient space (or polynomial ring) defining the standard grading
on our subalgebra. The enumerative data that follow are those of the normalization!

degrees of extreme rays:
1: 5

Hilbert basis elements are of degree 1
multiplicity = 10

Hilbert series:

163

denominator with 3 factors:

1: 3

degree of Hilbert Series as rational function = -1

Hilbert polynomial:
135
with common denominator =1

rank of class group = 2
class group is free
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6 original generators:
01

H PR ® Wo

S W N = U
w o OoN

This is an embedding of the toric ring defined by the binomials. There are many choices, and
Normaliz has taken one of them. You should check that the generators in this order satisfy
the binomial equations. Turning to the ring theoretic interpretation, we can say that the toric
ring defined by the binomial equations can be embedded into K[Y},Y>,Y3] as a monomial
subalgebra that is generated by Y Y Y,... Y[ Y3,

Now the generators of the normalization:

9 Hilbert basis elements of degree 1: 5 extreme rays:
001 001
010 010
103 103
112 130
121 352
130
232 5 support hyperplanes:
241 -15 75
352 -312
001
010
100

0 further Hilbert basis elements of higher degree:

3. The input file

The input file <project>. in consists of one or several items. There are several types of items:

(1) definition of the ambient space,

(2) matrices with integer entries,

(3) vectors with integer entries,

(4) computation goals and algorithmic variants,
(5) comments.

An item cannot include another item. In particular, comments can only be included between
other items, but not within another item.
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Matrices and vectors are classified by the following attributes:

(1) generators, constraints, accessory,
(2) cone/polyhedron, (affine) lattice,
(3) homogeneous, inhomogeneous.

In this classification, equations are considered as constraints on the lattice because Normaliz
treats them as such — for good reason: it is very easy to intersect a lattice with a hyperplane.

The line structure is irrelevant for the interpretation of the input, but it is advisable to use it for
the readability of the input file.

The input syntax of Normaliz 2 can still be used. It is explained in Appendix [C]

3.1. Input items
3.1.1. The ambient space and lattice

The ambient space is specified as follows:

amb_space <d>

where <d> stands for the dimension d of the ambient vector space R¢ in which the geometric
objects live. The ambient lattice A is set to Z.

In the following the letter d will always denote the dimension set with amb_space.

An example:

amb_space 5

indicates that polyhedra and lattices are subobjects of R>. The ambient lattice is Z>.

The first non-comment input item must specify the ambient space. There are no further rules
for the order of the items in the input file.

3.1.2. Matrices

A matrix is built as follows:

<T> <m>

<x_1>

<X_m=>

Here <T> denotes the type of the matrix, <m> the number of rows, and <x_1>,...,<x_m> are the
rows. The number of columns is implicitly defined by the dimension of the ambient space and
the type of the matrix. Example (with amb_space 3):

cone 3
123
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456
11 12 13

3.1.3. Vectors

A vector is built as follows:

<T>

<X>

Again <T> denotes the type and <x> is the vector itself. The number of components is deter-
mined by the type of the vector and the dimension of the ambient space. At present, all vectors
have length d.

Example:

grading
100

For certain vectors there exist shortcuts. Examples:

total_degree
unit_vector 25

3.1.4. Computation goals and algorithmic variants

These are single or compound words, such as

HilbertBasis
Multiplicity

The file can contain several computation goals, as in this example.

3.1.5. Comments

A comment has the form

/*x <text> x/

where <text> stands for the text of the comment. It can have arbitrary length and stretch over
several lines. Example:

/* This is a comment
4

Comments are only allowed at places where also a new keyword would be allowed, especially
not between the entries of a matrix or a vector. Comments can not be nested.
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3.1.6. Restrictions

Input items can almost freely be combined, but there are some restrictions:

(1) Every input type can appear only once.
(2) There can be at most one matrix of homogeneous cone generators. The types
cone, cone_and_lattice, polytope, rees_algebra

exclude each other mutually.

(3) There can be at most one matrix of homogeneous lattice generators. The types

lattice, saturation, cone_and_lattice

exclude each other mutually.

(4) polytope can not be combined with grading.

(5) The only type that can be combined with lattice_ideal is grading.

(6) The following types cannot be combined with inhomogeneous types or dehomogenization:

polytope, rees_algebra, excluded_faces
(7) The following types cannot be combined with inhomogeneous types:
dehomogenization, support_hyperplanes

Apart from these restrictions, homogeneous and inhomogeneous types can be combined as
well as generators and constraints. A single inhomogeneous type or dehomogenization in the
input triggers an inhomogeneous computation.

3.1.7. Default values

If there is no lattice defining item, Normaliz (virtually) inserts the the unit matrix as an input
item of type lattice. If there is no cone defining item, the unit matrix is (additionally) inserted
as an input item of type cone.

If the input is inhomogeneous, then Normaliz provides default values for vertices and the
offset as follows:

(1) If there is an input matrix of lattice type lattice, but no offset, then the offset 0 is
inserted.
(2) If there is an input matrix of type cone, but no vertices, then the vertex O is inserted.

3.1.8. Normaliz takes intersections (almost always)

The input may contain several cone defining items and several lattice defining items.

The sublattice L defined by the lattice input items is the infersection of the sublattices defined
by the single items. The polyhedron P is defined as the intersection of all polyhedra defined
by the single polyhedron defining items. The object then computed by Normaliz is

PNL.

There are two notable exceptions to the rule that Normaliz takes intersections:
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(1) vertices and cone form a unit. Together they define a polyhedron.
(2) The same applies to of fset and lattice that together define an affine lattice.

3.2. Homogeneous generators
3.2.1. Cones

The main type is cone. The other two types are added for special computations.

cone is a matrix with d columns. Every row represents a vector, and they define the cone
generated by them. Section 2cone.in

polytope is a matrix with d — 1 columns. It is internally converted to cone extending each
row by an entry 1. Section[2.4] polytope.in

rees_algebra is a matrix with d — 1 columns. It is internally converted to type cone in two

steps: (i) each row is extended by an entry 1 to length d. (ii) The first d — 1 unit vectors
of length d are appended. Section MonIdeal.in.

Moreover, it is possible to define a cone and a lattice by the same matrix:

cone_and_lattice The vectors of the matrix with d columns define both a cone and a lattice.
Section [2.11] A443.1in.

The Normaliz 2 types integral_closure and normalization can still be used. They are
synonyms for cone and cone_and_lattice, respectively.

3.2.2. Lattices

There are 3 types:

lattice is a matrix with d columns. Every row represents a vector, and they define the lattice
generated by them. Section[2.6.2] 3x3magiceven_lat.in

saturation is a matrix with d columns. Every row represents a vector, and they define the
saturation of the lattice generated by them. Section [2.6.2] 3x3magic_sat.1in.

cone_and_lattice See Section[3.2.1]

3.3. Homogeneous Constraints
3.3.1. Cones

inequalities is a matrix with d columns. Every row (&i,...,&,) represents a homogeneous
inequality
§1x1+---+‘g'dxd20, é,‘GZ,

for the vectors (x1,...,x;) € RY. Sections[2.3.2,[2.5.1], 2cone_ineq.in, poly_ineq.in
signs is a vector with d entries in {—1,0,1}. It stands for a matrix of type inequalities

composed of the sign inequalities x; > O for the entry 1 at the i-th component and the
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inequality x; < O for the entry —1. The entry 0 does not impose an inequality. See

[2.12.2] InhomCongSigns.in.
nonnegative It stands for a vector of type sign with all entries equal to 1. See Section[2.10}
Condorcet.in.

excluded_faces is a matrix with d columns. Every row (&;,...,&;) represents an inequality
Sixi + -+ 84xq > 0, S €L,

for the vectors (x1,...,x;) € R?. Itis considered as a homogeneous input type though it
defines inhomogeneous inequalities. The faces of the cone excluded by the inequalities
are excluded from the Hilbert series computation, but excluded_faces behaves like
inequalities in every other respect . Section[2.10.1] CondorcetSemi. in.

support_hyperplanes is a matrix with d columns. It requires homogeneous input. It is
the input type for precomputed support hyperplanes. Therefore Normaliz checks if all
input generators satisfy the inequalities defined by them. Apart from this extra check, it
behaves like inequalities. Section[6.9] 2cone_supp.in.

3.3.2. Lattices
equations is a matrix with d columns. Every row (&i,...,&,) represents an equation
Sixi+-+8xg =0,  GEL,

for the vectors (x1,...,x4) € R?. Section , 3x3magic.in
congruences is a matrix with d + 1 columns. Eachrow (&, ..., &y, ) represents a congruence

Sizi+-+8iza=0 mode, & ceZ,

for the elements (z1,...,z4) € Z%. Section|2.6.1} 3x3magiceven. in.

3.4. Inhomogeneous generators

3.4.1. Polyhedra

vertices isamatrix with d+ 1 columns. Eachrow (py,...,pa4,q), g > 0, specifies a generator
of a polyhedron (not necessarily a vertex), namely

Vi:(&,-.-,&), pi€Z7q€Z>07
q q

Section[2.9.1] InhomIneq_gen.in
Note: vertices and cone together define a polyhedron. If vertices is present in the
input, then the default choice for cone is the empty matrix.

The Normaliz 2 input type polyhedron can still be used.
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3.4.2. Lattices

offset is a vector with d entries. It defines the origin of the affine lattice. Section [2.12.1}
InhomCongLat. in.
Note: offset and lattice (or saturation) together define an affine lattice. If offset
is present in the input, then the default choice for lattice is the empty matrix.

3.5. Inhomogeneous constraints

3.5.1. Cones

inhom_inequalities is a matrix with d 41 columns. We consider inequalities

Sixi+-+8&xa>n, & MEL
rewritten as
Sixi -+ Egxa+(=1) >0
and then represented by the input vectors

(éla'”?gda_n)'

Section 2.9 InhomIneq.in.
strict_inequalities is a matrix with d columns. We consider inequalities

Sixi + -+ Eaxg > 1, ¢ e,

represented by the input vectors
(éla" -7&07)'

Section[2.3.3] 2cone_int.in.

strict_signs is a vector with d components in {—1,0,1}. It is the ”strict” counterpart to
signs. An entry 1 in component i represents the inequality x; > 0, an entry —1 the
opposite inequality, whereas 0 imposes no condition on x;. Condorcet_one.in

3.5.2. Lattices
inhom_equations is a matrix with d + 1 columns. We consider equations
Sixy +-+8xa =1, &, n € Z,

rewritten as
Sixi 4+ &axg+(=1) =0

and then represented by the input vectors

(815582, —M).

See 2. 7NumSemi . in.
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inhom_congruences We consider a matrix with d +2 columns. Each the row (§i,...,&;,—1,¢)
represents a congruence

Eizi+-+&zg=m modec, &i.n,ce,

for the elements (z,...,z4) € Z¢. Section[2.12] InhomCong. in.

3.6. Relations

Relations do not select a sublattice of Z¢ or a subcone of R?, but define a monoid as a quotient
of ZfiF modulo a system of congruences (in the semigroup sense!).

The rows of the input matrix of this type are interpreted as generators of a subgroup U C Z¢,
and Normaliz computes an affine monoid and its normalization as explained in Section[A.5]

Set G =Z¢ /U and L = G/torsion(G). Then the ambient lattice is A = Z’, r = rank L, and the
efficient lattice is L, realized as a sublattice of A. Normaliz computes the image of Zi in L
and its normalization.

lattice_ideal is a matrix with d columns containing the generators of the subgroup U.
Section[2.15] lattice_ideal.in.

The type lattice_ideal cannot be combined with any other input type (except grading)—
such a combination would not make sense. (See Section [3.8.1]for the use of a grading in this
case.)

3.7. Unit vectors

A grading or a dehomogenization is often given by a unit vector:
unit_vector <n> represents the nth unit vector in R? where n is the number given by <n>.

This shortcut cannot be used as a row of a matrix. It can be used whenever a single vector is
asked for, namely after grading, dehomogenization, signs and strict_signs. See Section
2.3 rational.in

3.8. Grading

This type is accessory. A Z-valued grading can be specified in two ways:
(1) explicitly by including a grading in the input, or
(2) implicitly. In this case Normaliz checks whether the extreme integral generators of the
monoid lie in an (affine) hyperplane A given by an equation A (x) = 1 with a Z-linear
form A. If so, then A is used as the grading.
Implicit gradings are only possible for homogeneous computations.

Explicit definition of a grading:
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grading is a vector of length d representing the linear form that gives the grading. Section
2.5] rational.in.

total_degree represents a vector of length d with all entries equal to 1. Section [2.10}
Condorcet.in.

Before Normaliz can apply the degree, it must be restricted to the effective lattice E. Even if
the entries of the grading vector are coprime, it often happens that all degrees of vectors in E
are divisible by a greatest common divisor g > 1. Then g is extracted from the degrees, and it
will appear as denominator in the output file.

Normaliz checks whether all generators of the (recession) monoid have positive degree. Ver-
tices of polyhedra may have degrees < 0.

3.8.1. lattice_ideal

In this case the unit vectors correspond to generators of the monoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectors in the input represent binomial
relations, and these must be homogeneous. In other words, both monomials in a binomial
must have the same degree. This amounts to the condition that the input vectors have degree
0. Normaliz checks this condition.

3.9. Dehomogenization

Like grading this is an accessory type.

Inhomogeneous input for objects in R is homogenized by an additional coordinate and then
computed in R?*!, but with the additional condition x;; > 0, and then dehomogenizing all
results: the substitution x;,1 = 1 acts as the dehomogenization, and the inhomogeneous input
types implicitly choose this dehomogenization.

Like the grading, one can define the dehomogenization explicitly:
dehomogenization is a vector of length d representing the linear form 6.

The dehomogenization can be any linear form & satisfying the condition §(x) > 0 on the cone
that is truncated. (In combination with constraints, the condition d(x) > 0 is automatically
satisfied since 0 is added to the constraints.)

The input type dehomogenization can only be combined with homogeneous input types, but
makes the computation inhomogeneous, resulting in inhomogeneous output. The polyhedron
computed is the intersection of the cone C (and the lattice [£) with the hyperplane given by
0(x) = 1, and the recession cone is CN{x: 6(x) =0}.

A potential application is the adaptation of other input formats to Normaliz. The output must
then be interpreted accordingly.

Section [6.5] dehomogenization.in.
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3.10. Pointedness

For Hilbert basis computations and triangulations Normaliz requires the (recession) cone to
be pointed (x, —x € C = x = 0). Whenever the condition of pointedness is violated at a step
where it is crucial, Normaliz will stop computations.

Pointedness is checked by testing whether the dual cone of C is full dimensional, and if not,
then the constructor of the cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in
the constructor of the object Full_Cone. Probable reason: Cone
not full dimensional(<=> dual cone not pointed)!

3.11. The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

3.12. Additional input file for NmzIntegrate

NmzIntegrate, whether called by Normaliz or from the command line, needs an input file
<project>.pnm that contains the polynomial for which the generalized Ehrhart series or the
integral is to be computed. See [11].

4. Computation goals and algorithmic variants

The library libnormaliz contains a class ConeProperties that collects computation goals, al-
gorithmic variants and additional data that are used to control the work flow in libnormaliz as
well as the communication with other programs. The latter are not important for the Normaliz
user, but are listed as a reference for libnormaliz.

All computation goals and algorithmic variants can be communicated to Normaliz in two
ways:

(1) in the input file, for example HilbertBasis,

(2) via a verbatim command line option, for example - -HilbertBasis.
For the most important choices there are single letter command line options, for example -N

for HilbertBasis. The single letter options ensure backward compatibility to Normaliz 2. In
jNormaliz they are also accessible via their full names.

Some computation goals apply only to homogeneous computations, and some others make
sense only for inhomogeneous computations.

Some single letter command line options combine two or more computation goals, and some
algorithmic variants imply computation goals.
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Normaliz can call NmzIntegrate. The three computation goals that require NmzIntegrate do
not belong to the class ConeProperties.

4.1. Default choices and basic rules

If several computation goals are set, all of them are pursued. In particular, computation goals
in the input file and on the command line are accumulated. But

--ignore, -i on the command line switches off the computation goals and algorithmic vari-
ants set in the input file.

The default computation goal is set if neither the input file nor command line contains a com-
putation goal or an algorithmic variant that implies a computation goal. It is

HilbertBasis + HilbertSeries + ClassGroup.

If set explicitly in the input file or on the command line the following adds these computation
goals:

DefaultMode

It is possible to set DefaultMode explicitly in addition to other computation goals. If it is set,
implicitly or explicitly, Normaliz will not complain about unreachable computation goals.

Normaliz collects all computation goals and algorithmic variants set in the input file and on
the command line. Note that some options may block others during the computation. For
example, KeepOrder blocks BottomDecomposition. Moreover, Normaliz tries to omit super-
fluous computations. For example, if the dual mode is called for the degree 1 elements, but
also the Hilbert series is to be computed, then the dual mode will be skipped since the degree
1 elements can be got as a cheap byproduct of the Hilbert series.

4.2. Computation goals

The computation goal Sublattice does not imply any other computation goal. All other
computation goals include Sublattice and SupportHyperplanes.

4.2.1. Lattice data

Sublattice, -S (upper case S) asks Normaliz to compute the data of the efficient sublattice.

4.2.2. Support hyperplanes and extreme rays

SupportHyperplanes, -s triggers the computation of support hyperplanes and extreme rays.

Normaliz tries to find a grading. In the inhomogeneous case the module rank is computed.
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4.2.3. Hilbert basis and related data

HilbertBasis, -N triggers the computation of the Hilbert basis. In inhomogeneous compu-
tations it asks for the Hilbert basis of the recession monoid and the module generators.

DeglElements, -1 restricts the computation to the degree 1 elements of the Hilbert basis.
Requires the presence of a grading. Forbidden in inhomogeneous computations.

ModuleGeneratorsOverOriginalMonoid, -M computes a minimal system of generators of
the integral closure over the original monoid (see Section [6.8)). Requires the existence
of original monoid generators. Forbidden in inhomogeneous computations.

4.2.4. Enumerative data

The computation goals in this section require a grading. They include SupportHyperplanes.

HilbertSeries, -q triggers the computation of the Hilbert series.
Multiplicity, -v restricts the computation to the multiplicity.

4.2.5. Combined computation goals

Can only be set by single letter command line options:

-n HilbertBasis + Multiplicity
-h HilbertBasis + HilbertSeries
-p DeglElements + HilbertSeries

4.2.6. The class group

ClassGroup, -C is self explanatory, includes SupportHyperplanes. Not allowed in inhomo-
geneous computations.

4.2.7. Triangulation and Stanley decomposition

Triangulation, -T makes Normaliz to compute, store and export the full triangulation.

TriangulationSize, -t makes Normaliz count the simplicial cones in the full triangulation.

TriangulationDetSum makes Normaliz additionally sum the absolute values of their deter-
minants.

StanleyDec, -y makes Normaliz compute, store and export the Stanley decomposition. Only
allowed in homogeneous computations.

The triangulation and the Stanley decomposition are treated separately since they can become
very large and may exhaust memory if they must be stored for output.

4.2.8. Nmzlntegrate

The computation goals that require calling NmzIntegrate can only be set on the command line.
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-E makes Normaliz compute a generalized Ehrhart series.
-L makes Normaliz compute the leading coefficient of a generalized Ehrhart series.
-I makes Normaliz compute an integral.

These computation goals require a homogeneous computation.

4.2.9. Boolean valued computation goals

They tell Normaliz to find out the answers to the questions they ask.

IsPointed : is the efficient cone C pointed?

IsDeglExtremeRays : do the extreme rays have degree 1?

IsDeglHilbertBasis : do the Hilbert basis elements have degree 1?

IsIntegrallyClosed : is the original monoid integrally closed?.

IsReesPrimary : for the input type rees_algebra, is the monomial ideal primary to the irrel-
evant maximal ideal?

These computation goals are not really useful for Normaliz since they will be answered auto-
matically. Note that they may trigger extensive computations.

4.3. Algorithmic variants

The default choice is the Normaliz primal algorithm that is based on a (partial) triangulation.

DualMode, -d activates the dual algorithm for the computation of the Hilbert basis and degree
1 elements. Includes HilbertBasis, unless DeglElements is set.

Approximate, -r activates the approximation algorithm for the computation of degree 1 ele-
ments. Nevertheless it does not imply DeglElements (we don’t want to block potential
other applications of Approximate.)

BottomDecomposition, -b tells Normaliz to use bottom decomposition in the primal algo-
rithm.

KeepOrder, -k forbids Normaliz to reorder the generators of the efficient cone C. Only
useful if original monoid generators are defined. Blocks BottomDecomposition.

4.4. Integer type

There is no need to worry about the integer type chosen by Normaliz. All preparatory compu-
tations use indefinite precision. The main computation is then tried with 64 bit integers. If it
fails, it will be restarted with indefinite precision. The 64 bit attempt can be surpassed by

BigInt, -B

Note that Normaliz tries to avoid overflows by intermediate results. If such overflow should
happen, the computation is repeated locally with indefinite precision. (The number of such
GMP transitions is shown in the terminal output.) If a final result is too large, Normaliz must
globally restart the computation.
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BigInt is not a cone property.

4.5. Control of computations

In addition to the computation goals in Section[d.2] the following elements of ConeProperties
control the work flow in libnormaliz and can be used by programs calling Normaliz to ensure
the availability of the data that are controlled by them.

ModuleGenerators controls the module generators in inhomogeneous computation.

ExtremeRays controls the extreme rays.

VerticesOfPolyhedron controls the vertices of the polyhedron in the inhomogeneous case.

HilbertFunction controls the Hilbert (quasi)polynomial.

RecessionRank controls the rank of the recession monoid in inhomogeneous computations.

AffineDim controls the affine dimension of the polyhedron in inhomogeneous computations.

ModuleRank in inhomogeneous computations it controls the rank of the module of lattice
points in the polyhedron as a module over the recession monoid.

ExcludedFaces controls the excluded faces.

InclusionExclusionData controls data derived from the excluded faces.

Grading controls the grading.

Dehomogenization controls the dehomogenization.

Generators controls the generators of the efficient cone.

OriginalMonoidGenerators controls the generators of the original monoid.

ReesPrimaryMultiplicity controls the multiplicity of a monomial ideal, provided it is pri-
mary to the maximal ideal generated by the indeterminates. Used only with the input
type rees_algebra.

5. Running Normaliz

The standard form for calling Normaliz is
normaliz [options] <project>

where <project> is the name of the project, and the corresponding input file is <project>.1in.
Note that normaliz may require to be prefixed by a path name, and the same applies to
<project>. A typical example on a Linux or Mac system:

./normaliz --verbose -x=5 ../example/big
that for MS Windows must be converted to
.\normaliz --verbose -x=5 example\big
Normaliz uses the standard conventions for calls from the command line:

(1) the order of the arguments on the command line is arbitrary.
(2) Single letter options are prefixed by the character - and can be grouped into one string.
(3) Verbatim options are prefixed by the characters - -.
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The options for computation goals and algorithmic variants have been described in Section
M] In this section the remaining options for the control of execution and output are discussed,
together with some basic rules on the use of the options.

5.1.

Basic rules

The options for computation goals and algorithms variants have been explained in Section
M The options that control the execution and the amount of output will be explained in the
following. Basic rules for the use of options:

1. If no <project> is given, the program will terminate.

5.2

The option -x differs from the other ones: <T> in -x=<T> represents a positive number
assigned to -x; see Section [5.3]

. Normaliz will look for <project>.in as input file.

If you inadvertently typed rafa2416.in as the project name, then Normaliz will first
look for rafa2416.1in.1in as the input file. If this file doesn’t exist, rafa2416.1in will be
loaded.

The options can be given in arbitrary order. All options, including those in the input
file, are accumulated, and syntactically there is no mutual exclusion. However, some
options may block others during the computation. For example, KeepOrder blocks
BottomDecomposition.

. If Normaliz cannot perform a computation explicitly asked for by the user, it will termi-

nate. Typically this happens if no grading is given although it is necessary.

In the options include DefaultMode, Normaliz does not complain about missing data
(anymore). It will simply omit those computations that are impossible.

If a certain type of computation is not asked for explicitly, but can painlessly be produced
as a side effect, Normaliz will compute it. For example, as soon as a grading is present
and the Hilbert basis is computed, the degree 1 elements of the Hilbert basis are selected
from it.

Info about Normaliz

--help, -? displays a help screen listing the Normaliz options.
--version displays information about the Normaliz executable.

5.3.

Control of execution

The options that control the execution are:

--verbose, -c activates the verbose (“‘console”) behavior of Normaliz in which Normaliz

writes additional information about its current activities to the standard output.
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-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is set by the operating system. If you
want to run Normaliz in a strictly serial mode, choose -x=1.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section [8.1] for further discussion.

5.4. Control of output files

In the default setting Normaliz writes only the output file <project>.out (and the files pro-
duced by Triangulation and StanleyDec). The amount of output files can be increased as
follows:

--files, -f Normaliz writes the additional output files with suffixes gen, cst, and inv, pro-
vided the data of these files have been computed.

--all-files, -a includes Files, Normaliz writes all available output files (except typ, the
triangulation or the Stanley decomposition, unless these have been requested).

--<suffix> chooses the output file with suffix <suffix>.

For the list of potential output files, their suffixes and their interpretation see Section |/} There

may be several options - -<suffix>.

5.5. Overriding the options in the input file

Since Normaliz accumulates options, one cannot get rid of settings in the input file by com-
mand line options unless one uses

--ignore, -i This option disables all settings in the input file.

6. More examples

In this section we discuss some advanced features of Normaliz.

6.1. Lattice points by approximation

In order to find the lattice points in a polytope P, old versions of Normaliz created the same
vectors that are needed for the Hilbert basis computations, but used that no reduction is nec-
essary to find the degree 1 points. They are automatically part of the Hilbert basis. While
this observation speeded up the computations considerably, the number of vectors to be cre-
ated could simply make the computation impossible. This was especially true for rational
polytopes whose vertices have large denominators.

Normaliz 3 takes the following approach: simplicial subcones S with rational vertices are
approximated by integral polytopes, and only the lattice points in § are kept. This is done
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automatically. Since version 2.11 the user can also choose a global approximation of the input
polytope P by the option Approximate, and this is often a very good choice. It is not the
default choice of Normaliz since the number of vertices of P should not be too large.

Another option that is often favorable is DualMode in connection with DeglElements. So there
are three choices for the computation of lattice points in polytopes:

DeglElements, -1 with local approximation of rational polytopes,

Approximate DeglElements, -rl combined with global approximation,

DualMode DeglElements, -dl1 dual mode optimized for the computation of degree 1 ele-
ments.

Our demonstration example is max_polytope_cand with the input file

amb_space 5
inequalities 11

-3 -3 -10 14 88
26 -3 19 14 361
-4 25 6 -49 133
2 -3 1 5 17
-2 -3 -7 11 61
-6 23 9 -30 233
-2 7 3 -9 81
-8 17 12 -65 183
8 -15 4 23 65
-8 -13 -28 45 241
-8 27 12 -35 321
grading
unit_vector 5
Approximate
DeglElements

set up for global approximation. (This is not a random input file; it has come up in connection
with the paper “Quantum jumps of normal polytopes” by W. Bruns, J. Gubeladze and M.
Michatek, arXiv:1504.01036.)

Despite of the large number of lattice points, the computation is extremely fast. Now remove
Approximate. This will take considerably longer, but will not overstretch your patience. Note
that Normaliz will pass to GMP integers, which becomes necessary because of the huge de-
terminants of the simplicial cones (without approximation).

The third choice using the dual algorithm is still o.k. though it takes the most time in this case.
In other cases it may very well be the fastest.
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You can also use inhomogeneous input with the default computation mode or dual mode.
This is equivalent to homogeneous input with DeglElements and DualMode, respectively, in
addition.

6.2. The bottom decomposition

The triangulation size and the determinant sum of the triangulation are critical size parameters
in Normaliz computations. Normaliz always tries to order the generators in such a way that
the determinant sum is close to the minimum, and on the whole this works out well. The use
of the bottom decomposition by BottomDecomposition, -b enables Normaliz to compute a
triangulation with the optimal determinant sum for the given set of generators, as we will
explain in the following.

The determinant sum is independent of the order of the generators of the cone C if they lie in
a hyperplane H. Then the determinant sum is exactly the normalized volume of the polytope
spanned by 0 and C N H. The triangulation itself depends on the order, but the determinant
sum is constant.

This observation helps to find a triangulation with minimal determinant sum in the general
case. We look at the bottom (the union of the compact faces) of the polyhedron generated by
X1,...,Xx, as vertices and C as recession cone, and take the volume underneath the bottom:

With the option BottomDecomposition, -b, Normaliz 3.0 computes a triangulation that re-
spects the bottom facets. This yields the optimal determinant sum for the given generators. If
one can compute the Hilbert basis by the dual algorithm, it can be used as input, and then one
obtains the absolute bottom of the cone, namely the compact facets of the convex hull of all
nonzero lattice points.

Normaliz does not always use the bottom decomposition by default since its computation
requires some time and administrative overhead. However, as soon as the input “profile” is
considered to be “rough” it is invoked. The measure of roughness is the ratio between the
maximum degree (or L; norm without a grading) and the minimum. A ratio > 10 activates the
bottom decomposition.
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The bottom decomposition is part of the subdivision of large simplicial cones discussed in the
next section.

Also see Section [6.11]

Note: the bottom decomposition cannot be activated by Normaliz if KeepOrder is used. In this
case BottomDecomposition must be set explicitly if it is wanted.

6.3. Subdivision of large simplicial cones

Especially in computations with rational polytopes one encounters very large determinants that
can keep the Normaliz primal algorithm from terminating in reasonable time. As an example
we take hickerson-18.in from the LattE distribution [3]. It is simplicial and the complexity
is totally determined by the large determinant ~ 4.17 x 10'* (computed with -v).

If we are just interested in the degree 1 points, Normaliz uses the approximation method of
Section and finds 44 degree 1 points very quickly. If we use these points together with
the extreme rays of the simplex, then the determinant sum decreases to ~ 1.3 x 10!, and the
computation of the Hilbert basis and the Hilbert series is in reach. But it is better to pursue the
idea of subdividing large simplicial cones systematically. Normaliz employs two methods:

(1) computation of subdivision points by the IP solver SCIP,
(2) computation of candidate subdivision points by approximation of the given simplicial
cone by an overcone that is generated by vectors of “low denominator”.

Normaliz tries to subdivide a simplicial cone if it has determinant > 10%. Both methods are
used recursively via stellar subdivision until simplicial cones with determinant < 10° have
been reached or no further improvement is possible. Furthermore, if some big simplices are
still remaining, method (2) is applied again in both cases with a higher approximation level.
All subdivision points are then collected, and the start simplicial cone is subdivided with
bottom decomposition, which in general leads to substantial further improvement.

The use of SCIP requires a Normaliz executable that is compiled with the option SCIP=yes
after the installation of SCIP. Without SCIP only the approximation method is used. However,
it can happen that SCIP fails because the required precision cannot be reached by floating
point calculations. In this vase the approximation method will be tried as well.

The following table contains some performance data for subdivisions based on SCIP (paral-
lelization with 20 threads).

hickerson-16|hickerson-18|knapsack_11_60
simplex volume 9.83x 107 | 4.17x 104 2.8 x 101
volume under bottom 8.10 x 10° 3.86 x 107 2.02 x 107
volume used 3.93 x 10° 5.47 x 107 2.39 x 107
runtime without subdivision 2s >12d >8 d
runtime with subdivision 0.5s 46 s 5.1s

Performance data for approximation:
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hickerson-16 |hickerson-18| knapsack_11_60
volume used 3.9 x 100 9.1 x 107 2.3 % 10°
runtime with subdivision 0.7s 58 s 2m36s

A good nonsimplicial example showing the subdivision at work is hickerson_18plusl.in.

Note: After subdivision the decomposition of the cone may no longer be a triangulation in the
strict sense, but a decomposition that we call a nested triangulation; see[6.6.1]

6.4. Primal vs. dual — division of labor

The choice between the primal and the dual algorithm for Hilbert basis computations is
presently left to the user. Normaliz does not make a guess which algorithm might be faster. If
the number of support hyperplanes is small relative to the dimension, then the dual algorithm
can be much faster. This is in particular true for (in)homogeneous linear systems of equations
where the number of support hyperplanes is bounded above by the number of indeterminates
(+1 in the inhomogeneous case). The paper [8] contains computation times for many ex-
amples that can help the user to choose the right algorithm. Note that the dual algorithm is
arithmetically less critical than the primal algorithm since it basically only requires addition
of vectors.

When both Hilbert basis and Hilbert series are to be computed, the best solution can be the
combination of both algorithms. We recommend 2equations.in as a demonstration example
which combines the algorithmic variant DualMode and the computation goal HilbertSeries:

amb_space 9

equations 2

16 -7 -1825 -36 6 8 -9
7 -13156 -9 -8 11 12 -2
total_degree

DualMode

HilbertSeries

The computation time (20 parallel threads) is 2 m 54 s whereas the default mode needs 4 h 4
m 20 s.

In addition to showing that the combination of the primal and dual algorithm can be very
useful, it also shows the power of the the subdivision of large simplicial cones and bottom
decomposition: while the “raw” determinant sum is /= 7.7 x 10'! (you can compute it with the
options -1iv), the determinant sum of the Hilbert series computation is only ~ 8.4 x 10°.

6.5. Explicit dehomogenization

Inhomogeneous input for data in RY is homogenized by an extra (d + 1)th coordinate. The
dehomogenization sets the last coordinate equal to 1. Other systems may prefer the first co-
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ordinate. By choosing an explicit dehomogenization Normaliz can be adapted to such input.
The file dehomogenization.in

amb_space 3
inequalities 2
-110

-101
dehomogenization
unit_vector 1

indicates that in this case the first variable is the homogenizing one. The output file

1 module generators

2 Hilbert basis elements of recession monoid
1 vertices of polyhedron

2 extreme rays of recession cone

2 support hyperplanes of polyhedron

embedding dimension = 3
affine dimension of the polyhedron = 2 (maximal)
rank of recession monoid = 2

size of triangulation =0
resulting sum of |det|s =0
dehomogenization:

100

module rank =1

K ok ok oK ok oK oK K oK ok K ok oK 3 oK oK K ok o oK K oK ok oK ok K ok ok ok oK ok K ok oK 3 ok ok K ok K ok ok ok oK ok oK oK K oKk ok oK K oK K Kk K K K

1 module generators:
111

N

Hilbert basis elements of recession monoid:
01
10

[clN o]

1 vertices of polyhedron: 2 support hyperplanes of polyhedron:
111 -101
-110
2 extreme rays of recession cone:
01
10

[clN o]
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shows that Normaliz does the computation in the same way as with implicit dehomogeniza-
tion, except that now the first coordinate decides what is in the polyhedron and what belongs
to the recession cone, roughly speaking.

Note that the dehomogenization need not be a coordinate. It can be any linear form that is
nonnegative on the cone generators.

6.6. Exporting the triangulation

The option -T asks Normaliz to export the triangulation by writing the files <project>.tgn
and <project>.tri:

tgn The file tgn contains a matrix of vectors (in the coordinates of A) spanning the simplicial
cones in the triangulation.

tri The file tri lists the simplicial subcones as follows: The first line contains the number
of simplicial cones in the triangulation, and the next line contains the number m + 1
where m = rank[E. Each of the following lines specifies a simplicial cone A: the first
m numbers are the indices (with respect to the order in the file tgn) of those generators
that span A, and the last entry is the multiplicity of A in E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elements of ).

The following example is the 2-dimensional cross polytope with one excluded face (cross2.in).
The excluded face is irrelevant for the triangulation.

amb_space 3
polytope 4

1 0

0 1

-1 0

0 -1
excluded_faces 1
1 1-1

Its tgn and tri files are

tgn tri
4 2
3 4
101 1232
011 1342
-101 plain
0 -11
We see the 4 vertices vy, ...,v4 in homogenized coordinates in tgn and the 2 simplices (or the

simplicial cones over them) in tri: both have multiplicity 2. The last word plain indicates
that Normaliz has computed a triangulation in the strict sense, namely a simplicial subdivision
in which neighboring simplicial cones match along common faces. The alternative is nested
that we discuss below.
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In addition to the files <project>.tgn and <project>.tri, also the file <object>.inv is
written. It contains the data of the file <project>.out above the line of stars in a human and
machine readable format.

6.6.1. Nested triangulations

If Normaliz has subdivided a simplicial cone of a triangulation of the cone C, the resulting
decomposition of C may no longer be a triangulation in the strict sense. It is rather a nested
triangulation, namely a map from a rooted tree to the set of full-dimensional subcones of C
with the following properties:

(1) the root is mapped to C,

(2) every other node is mapped to a full dimensional simplicial subcone,

(3) the simplicial subcones corresponding to the branches at a node x form a triangulation
of the simplicial cone corresponding to x.

The following figure shows a nested triangulation:

For the Normaliz computations, nested triangulations are as good as ordinary triangulations,
but in other applications the difference may matter. With the option -T, Normaliz prints the
leaves of the nested triangulation to the tri file. They constitute the simplicial cones that are
finally evaluated by Normaliz.

The triangulation is always plain if -T is the only computation goal or if it is just combined
with -v. Otherwise it can only fail to be plain if it contains determinants > 108.

6.7. Exporting the Stanley decomposition

The option -y makes Normaliz write the files <project>.tgn, <project>.dec and <project>.inv.
Stanley decomposition is contained in the file with the suffix dec. But this file also contains
the inclusion/exclusion data if there are excluded faces:

(a) If there are any excluded faces, the file starts with the word in_ex_data. The next line
contains the number of such data that follow. Each of these lines contains the data of a face
and the coefficient with which the face is to be counted: the first number lists the number of
generators that are contained in the face, followed by the indices of the generators relative to
the tgn file and the last number is the coefficient.
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(b) The second block (the first if there are no excluded faces) starts with the word Stanley_dec,
followed by the number of simplicial cones in the triangulation.

For each simplicial cone A in the triangulation this file contains a block of data:

(1) aline listing the indices iy, . . ., i, of the generators v;,,...,v;, relative to the order in tgn
(asin tri, m =rank[E);

(i1) a u x m matrix where u is the multiplicity of A (see above).

In the notation of [8]], each line lists an “offset” x + €(x) by its coordinates with respect
to vi,,...,v;, as follows: if (ay,...,a;) is the line of the matrix, then

1
x+e(x) = E<alvi1 + e amvi,)-

The dec file of the example above is

in_ex_data

1

212 -1

Stanley_dec

2

134 123
2 2

3 3
002 000
112 101

There is 1 face in in_ex_data (namely the excluded one), it contains the 2 generators v and
vo and appears with multiplicity —1. The Stanley decomposition consists of 4 components of
which each of the simplicial cone contains 2. The second offset in the second simplicial cone
is

1
5(1\/1 +0vy + 1v3) = (0,0,1).

The file 3x3magiceven.in has been processed with the option -ahTy activated. We recom-
mend you to inspect all the output files in the subdirectory example of the distribution.

6.8. Module generators over the original monoid

Suppose that the original generators are well defined in the input. This is always the case
when these consists just of a cone or a cone_and_lattice. Let M be the monoid generated
by them. Then Normaliz computes the integral closure N of M in the effective lattice E. It
is often interesting to understand the difference set N\ M. After the introduction of a field
K of coefficients, this amounts to understanding K[N] as a K[M]-module. With the option
ModuleGeneratorsOverOriginalMonoid, -M Normaliz computes a minimal generating set 7’
of this module. Combinatorially this means that we find an irreducible cover

N=Jx+Mm.

xeT
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Note that 0 € T since M C N.

As an example, we can run 2cone. in with the option -M on the command line. This yields the
output

4 Hilbert basis elements:
11
12 5 module generators over original monoid:
13 00
21 11
12
2 extreme rays: 22
13 23
21

6.9. Precomputed support hyperplanes

Computing the support hyperplanes can be a very time consuming task, and if it has been
the first step in the exploration of a difficult example, it may be desirable, to use the support
hyperplanes as additional input in order to save computation time. This is especially true if
Normaliz must do an intermediate computation of the support hyperplanes because of a large
number of simplicial cones to be evaluated. The file 2cone_supp.in is just a toy example:

amb_space 2

cone 2

21

13
support_hyperplanes 2
-1 02

3 -1

As pointed out in Section [3.3.1] Normaliz must trust you—here is no way of checking the
correctness of this input without recomputing it.
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6.10. Shift, denominator, quasipolynomial and multiplicity

In this section we discuss the interplay of shift, denominator of the grading and the quasipoly-
nomial. As long as the denominator is 1, the situation is very simple and no ambiguity arises.
See Section [2.9] We modify the example from that section as follows (InhomIneq_7.in):

amb_space 2
inhom_inequalities 3

6 2 1
06 -2 3
2 -2 3
grading
70

The output related to the grading is

grading:
700
with denominator = 7

module rank = 2
multiplicity = 2

Hilbert series:

11

denominator with 1 factors:

1: 1

shift = -1

degree of Hilbert Series as rational function = -1

Hilbert polynomial:
2
with common denominator =1

The Hilbert series computed by hand is

We obtain it from the output as follows. The printed series is
1+1
-5
Now the shift is applied and yields
=11
11—t~
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Finally we make the substitution ¢ —> ¢’, and obtain the desired result.

Now we add the complication x| +x, = —1 mod 8 ((InhomIneq_7_8.1in):

amb_space 2
inhom_inequalities 3
6 2 1

0 -2 3

2 -2 3

grading

70
inhom_congruences 1
1118

The result:

grading:
700
with denominator = 7

module rank = 2
multiplicity = 1/4

Hilbert series:
10000001
denominator with 1 factors:
8:1

shift = -1

degree of Hilbert Series as rational function = -2
Hilbert series with cyclotomic denominator:
-11-11-11-1

cyclotomic denominator:

1:' 1 4: 1 8:1

Hilbert quasi-polynomial of period 8:

0: © 4: 0
1: 0 5: 0
2: 0 6: 1
3: 0 7: 1

1

with common denominator

The printed Hilbert series is
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The application of the shift yields

the correct result for the divided grading. The Hilbert quasipolynomial is computed for the
divided grading, as already explained in Section[2.6.1] As a last step, we can apply the substi-
tution ¢ > ¢’ in order obtain the Hilbert series
=742
1 —1

for the original grading.

Like the quasipolynomial, the multiplicity is computed for the divided grading.

6.11. A very large computation

The example CondEffPlur.in is one of the largest that Normaliz has mastered. The goal is to
compute the Condorcet efficiency of plurality voting for 4 candidates (see [10] and the refer-
ences therein), even in the refined form of the Hilbert series. The Hilbert basis computation
is extremely fast in DualMode so that it can be used as input. We tried three different setups
(each with 30 parallel threads):

input | triangulation size determinant sum | computation time
inequalities | 347,225,775,338 | 4,111,428,313,448 112:43:17 h
inequalities, -b | 288,509,390,884 | 1,509,605,641,358 84:26:19 h
Hilbert basis, -b | 335,331,680,623 | 1,433,431,230,802 97:50:05 h

The results show that the determinant sum of the bottom decomposition based on the extreme
rays (resulting from dualizing the input cone) comes very close to the absolute minimum that
is reached by the Hilbert basis as input. The latter leads to a finer triangulation, which, despite
of the smaller determinant sum, increases the computation time.

As long as the determinants are rather small (as in this computation), the two cases det = 1
and det > 1 make the difference in computation complexity. In the first case Normaliz must
solve 1 or 2 linear systems for the simplicial cone, in the latter 2 or 3.

Note: though Normaliz can compute this example, it is really a case for NmzIntegrate; see [8]].
It converts the computation time from days to hours.

7. Optional output files

When one of the options Files, -f or ALlLFiles, -a is activated, Normaliz writes additional
output files whose names are of type <project>.<type>. (Note that the options -T, Triangulation
and -y, StanleyDec as well as the options calling NmzIntegrate also write files in addition to
<project>.out.) Moreover one can select the optional output files individually via command

line options. Most of these files contain matrices in a simple format:
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<m>
<n>

<x_1>

<X_m>

where each row has <n> entries. Exceptions are the files with suffixes cst, inv, esp.

7.1. The homogeneous case

The option - f makes Normaliz write the following files:

gen contains the Hilbert basis. If you want to use this file as an input file and reproduce the
computation results, then you must make it a matrix of type cone_and_lattice (and
add the dehomogenization in the inhomogeneous case).

cst contains the constraints defining the cone and the lattice in the same format as they
would appear in the input: matrices of types constraints following each other. Each
matrix is concluded by the type of the constraints. Empty matrices are indicated by 0 as
the number of rows. Therefore there will always be at least 3 matrices.
If a grading is defined, it will be appended. Therefore this file (with suffix in) as input
for Normaliz will reproduce the Hilbert basis and all the other data computed, at least
in principle.

inv contains all the information from the file out that is not contained in any of the other
files.

If -a is activated, then the following files are written additionally:

ext contains the extreme rays of the cone.
htl contains the degree 1 elements of the Hilbert basis if a grading is defined.
egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with re-
spect to a basis of [E. esp contains the grading and the dehomogenization in the coordi-
nates of [E. Note that no equations for CNE or congruences for [E are necessary.
lat contains the basis of the lattice E.
mod contains the module generators of the integral closure modulo the original monoid.

In order to select one or more of these files individually, add an option of type - -<suffix> to
the command line where <suffix> can take the values

gen, cst, inv, ext, htl, egn, esp, lat, mod, typ

The type typ is not contained in Files or AllFiles since it can be extremely large. It is the
matrix format described above. It is the product of the matrices corresponding to egn and the
transpose of esp. In other words, the linear forms representing the support hyperplanes of the
cone C are evaluated on the Hilbert basis. The resulting matrix, with the generators corre-
sponding to the rows and the support hyperplanes corresponding to the columns, is written to
this file.
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The suffix typ is motivated by the fact that the matrix in this file depends only on the isomor-
phism type of monoid generated by the Hilbert basis (up to row and column permutations). In
the language of [4] it contains the standard embedding.

Note: the explicit choice of an optional output file does not imply a computation goal. Out-
put files that would contain unknown data are simply not written without a warning or error
message.

7.2. Modifications in the inhomogeneous case

The optional output files are a subset of those that can be produced in the homogeneous case.
The main difference is that the generators of the solution module and the Hilbert basis of the
recession monoid appear together in the file gen. They can be distinguished by evaluating the
dehomogenization on them (simply the last component with inhomogeneous input), and the
same applies to the vertices of the polyhedron and extreme rays of the recession cone. The file
cst contains the constraints defining the polyhedron and the recession module in conjunction
with the dehomogenization, which is also contained in the cst file, following the constraints.

With -a the files egn and esp are produced. These files contain gen and the support hyper-
planes of the homogenized cone in the coordinates of [E, as well as the dehomogenization.

8. Performance

8.1. Parallelization

The executables of Normaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,
even on relatively small systems. However, one should not underestimate the administrational
overhead involved.

e [tis not a good idea to use parallelization for very small problems.
e On multi-user systems with many processors it may be wise to limit the number of
threads for Normaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Normaliz option -x (see Section [5.3)) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)
or
set OMP_NUM_THREADS=<T>  (Windows)

where <T> stands for the maximum number of threads accessible to Normaliz. For example,
we often use
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export OMP_NUM_THREADS=20

on a multi-user system system with 24 cores.
Limiting the number of threads to 1 forces a strictly serial execution of Normaliz.

The paper [8] contains extensive data on the effect of parallelization. On the whole Normaliz
scales very well. However, the dual algorithm often performs best with mild parallelization,
say with 4 or 6 threads.

8.2. Running large computations

Normaliz can cope with very large examples, but it is usually difficult to decide a priori
whether an example is very large, but nevertheless doable, or simply impossible. Therefore
some exploration makes sense.

See [8]] for some very large computations. The following hints reflect the authors’ experience
with them.

(1) Run Normaliz with the option -cs and pay attention to the terminal output. The number
of extreme rays, but also the numbers of support hyperplanes of the intermediate cones are
useful data.

(2) In many cases the most critical size parameter is the number of simplicial cones in the
triangulation. It makes sense to determine it as the next step. Even with the fastest potential
evaluation (option -v), finding the triangulation takes less time, say by a factor between 3 and
10. Thus it makes sense to run the example with -t in order to explore the size.

As you can see from [8]], Normaliz has successfully evaluated triangulations of size ~ 5-10!!
in dimension 24.

(3) Another critical parameter are the determinants of the generator matrices of the simplicial
cones. To get some feeling for their sizes, one can restrict the input to a subset (of the extreme
rays computed in (1)) and use the option -v or the computation goal TriangulationDetSum if
there is no grading.

The output file contains the number of simplicial cones as well as the sum of the absolute
values of the determinants. The latter is the number of vectors to be processed by Normaliz in
triangulation based calculations.

The number includes the zero vector for every simplicial cone in the triangulation. The zero
vector does not enter the Hilbert basis calculation, but cannot be neglected for the Hilbert
series.

Normaliz has mastered calculations with > 10! vectors.

(4) If the triangulation is small, we can add the option -T in order to actually see the triangu-
lation in a file. Then the individual determinants become visible.

(5) If a cone is defined by inequalities and/or equations consider the dual mode for Hilbert
basis calculation, even if you also want the Hilbert series.

(6) The size of the triangulation and the size of the determinants are not dangerous for memory
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by themselves (unless -T or -y are set). Critical magnitudes can be the number of support
hyperplanes, Hilbert basis candidates, or degree 1 elements.

9. Distribution and installation

In order to install Normaliz you should first download the basic package containing the docu-
mentation, examples, source code, jNormaliz, NmzIntegrate and the packages for Singular and
Macaulay2. Then unzip the downloaded file Normaliz3.0.zip in a directory of your choice.
(Any other downloaded zip file for Normaliz should be unzipped in this directory, too.)

This process will create a directory Normaliz3.0 (called Normaliz directory) and several sub-
directories in Normaliz3.0. The names of the subdirectories created are self-explanatory.
Nevertheless we give an overview:

e In the main directory Normaliz3.0 you should find jNormaliz. jar, Copying and sub-
directories.

e The subdirectory source contains the source files. The subdirectory genEhrhart con-
tains the NmzIntegrate source.

e The subdirectory doc contains the file you are reading and further documentation.

o In the subdirectory example are the input and output files for some examples. It contains
all input files of examples of this documentation, except the toy examples of Section 3]

e Automated tests which run Normaliz on different inputs and options are contained in
the subdirectory test.

e The subdirectory singular contains the SINGULAR library normaliz.lib and a PDF
file with documentation.

e The subdirectory macaulay2 contains the MACAULAY?2 package Normaliz.m2.

e The subdirectory 1ib contains libraries for jNormaliz.

We provide executables for Windows, Linux (each in a 32 bit and a 64 bit version) and Mac.
Download the archive file corresponding to your system Normaliz3.0<systemname>.zip and
unzip it. This process will store the executables of Normaliz and NmzIntegrate in the directory
Normaliz3.0. In case you want to run Normaliz from the command line or use it from other
systems, you may have to copy the executables to a directory in the search path for executables.

Please remove old versions of normaliz, normé64 and normbig from your search path.

10. Compilation

We only describe the compilation of Normaliz. See the documentation of NmzIntegrate for its
compilation.
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10.1. General

For compiling Normaliz the following libraries are needed:

e GMP including the C++ wrapper (libgmpxx and libgmp)
e boost (headers only)
e OpenMP 3.0 enabled compiler (to use parallelization, optional)

Furthermore we require some C++11 features (e.g. std: :exception_ptr), supported by:

o GNU g++ 4.4,
e clang++ 2.9,
e Intel icpc 12.0

See https://github.com/Normaliz/Normaliz/issues/26 for a more detailed discussion.

The mentioned compilers are also able to handle OpenMP 3.0, with the exception of clang++,
there the first OpenMP support was introduced in 3.7.

In the following we describe the configuration/build process using cmake. This has capabili-
ties to find libraries and allows to change settings in a nice interface. It supports the compila-
tion of the library as a static and a dynamic version, installation of the library. Furthermore it
can also be used to compile Normaliz including SCIP or offloads to Intel Xeon Phi cards.

We will only handle the basic use of cmake for compilation, see the file source/INSTALL for
additional information, especially on how to use customized paths.

10.2. Linux
On Ubuntu the following packages should be installed:
sudo apt-get install g++ libgmp-dev libboost-dev cmake cmake-curses-gui

We assume you start in the normaliz root dir (with subdirs source, example, ...).

1. Create a build directory where normaliz will be build and cd into it, e.g.
mkdir BUILD; cd BUILD

2. Initial configuration, have a look at the next sections for further information about the
configuration.

cmake ../source
3. [Optional] Check configuration and maybe edit something (note the two 'c’s at the
beginning)
ccmake ../source
In the ccmake interface you can use this work flow:

e c (configure)
e change entries if you like (use cursor keys and enter), then press c again
e g (generate and exit)
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4. compile
make
5. install it
make install

This will install the library headers, the produced libnormaliz and the normaliz exe-
cutable. The installation path can be changed with ccmake (CMAKE_INSTALL_PREFIX).

10.3. MacOs X

Currently Apple does not supply a compiler which supports OpenMP. We recommend the
use of a current gcc. Mac versions older than 4.5 have a bug that makes it impossible to use
OpenMP.

You can then follow the instructions for Linux.

10.4. Windows

One can compile Windows executables with the Cygwin port of GCC. Unfortunately it is not
compatible to OpenMP.

Using Visual Studio is a bit tricky. Microsoft’s C++ compiler does not support OpenMP 3.0.
Creating a Normaliz Visual Studio project via cmake is currently not fully supported. The
supplied executables are compiled with icpc with a manually created project. Please contact
us if you want to build Normaliz on Windows.

11. Copyright and how to cite

Normaliz 3.0 is free software licensed under the GNU General Public License, version 3. You
can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it has been used:

W. Bruns, B. Ichim, R. Sieg, T. Romer and C. Séger: Normaliz. Algorithms for rational
cones and affine monoids. Available at http://www.math.uos.de/normaliz.

The corresponding \bibitem:
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\bibitem W. Bruns, B. Ichim, R. Sieg, T. R\"omer and C. S\"oger:
Normaliz. Algorithms for rational cones and affine monoids.
Available at http://www.math.uos.de/normaliz.

A BibTeX entry:

@Misc{Normaliz,

author = {W. Bruns and B. Ichim and R. Sieg and T. R\"omer and C. S\"oger},
title = Normaliz. Algorithms for rational cones and affine monoids,
howpublished ={Available at \texttt{http://www.math.uos.de/normaliz}}

}

It is now customary to evaluate mathematicians by such data as numbers of publications,
citations and impact factors. The data bases on which such dubious evaluations are based do
not list mathematical software. Therefore we ask you to cite the article [8] in addition. This is
very helpful for the younger members of the team.
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A. Mathematical background and terminology

For a coherent and thorough treatment of the mathematical background we refer the reader to

[4].

A.1l. Polyhedra, polytopes and cones

An affine halfspace of R is a subset given as
Hy ={x:A(x) >0},

where A is an affine form, i.e., a non-constant map A : RY 5 R, Ax)=oqx;+--+agxg+ B
with p,...,04, B € R. If B =0 and A is therefore linear, then the halfspace is called linear.
The halfspace is rational if A is rational, i.e., has rational coordinates. If A is rational, we
can assume that it is even integral, i.e., has integral coordinates, and, moreover, that these are
coprime. Then A is uniquely determined by H /'{ . Such integral forms are called primitive, and
the same terminology applies to vectors.

Definition 1. A (rational) polyhedron P is the intersection of finitely many (rational) halfs-
paces. If it is bounded, then it is called a polytope. If all the halfspaces are linear, then P is a
cone.

The dimension of P is the dimension of the smallest affine subspace aff(P) containing P.

A support hyperplane of P is an affine hyperplane H that intersects P, but only in such a way
that H is contained in one of the two halfspaces determined by H. The intersection H NP is
called a face of P. It is a polyhedron (polytope, cone) itself. Faces of dimension O are called
vertices, those of dimension 1 are called edges (in the case of cones extreme rays), and those
of dimension dim(P) — 1 are facets.

When we speak of the support hyperplanes of P, then we mean those intersecting P in a facet.
Their halfspaces containing P cut out P from aff(P). If dim(P) = d, then they are uniquely
determined (up to a positive scalar).

The constraints by which Normaliz describes polyhedra are

(1) linear equations for aff(P) and
(2) linear inequalities (simply called support hyperplanes) cutting out P from aff(P).

In other words, the constraints are given by a linear system of equations and inequalities,
and a polyhedron is nothing else than the solution set of a linear system of inequalities and
equations. It can always be represented in the form

Ax>b, AeR™¢peR",

if we replace an equation by two inequalities.
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A.2. Cones

The definition describes a cone by constraints. One can equivalently describe it by generators:

Theorem 2 (Minkowski-Weyl). The following are equivalent for C C R?;
1. Cis a (rational) cone;

2. there exist finitely many (rational) vectors xy,...,x, such that

C=A{aix1+-+apx,:ay,...,ap e R }.

By R we denote the set of nonnegative real numbers; Q. and Z, are defined in the same
way.

The conversion between the description by constraints and that by generators is one of the
basic tasks of Normaliz. It uses the Fourier-Motzkin elimination.

A cone is pointed if x € C and —x € C is only possible with x = 0. If a rational cone is pointed,
then it has uniquely determined extreme integral generators. These are the primitive integral
vectors spanning the extreme rays. These can also be defined with respect to a sublattice L of
74, provided C is contained in RL.

The dual cone C* is given by
C* ={A e (RY)": A(x) >0 forall x € C}.

Under the identification R? = (R?)** one has C** = C. Let C, be the set of those x € C for
which —x € C as well. It is the largest vector subspace contained in C. Then one has

dimCy+dimC* =d.

In particular, C is pointed if and only if C* is full dimensional, and this is the criterion for
pointedness used by Normaliz. Linear forms Ai,...,A, generate C* if and only if C is the
intersection of the halfspaces H f . Therefore the conversion from constraints to generators

and its converse are the same task, except for the exchange of R? and its dual space.

A.3. Polyhedra

In order to transfer the Minkowski-Weyl theorem to polyhedra it is useful to homogenize
coordinates by embedding R as a hyperplane in R?*!, namely via

K:RT SR k(x) = (x,1).

If P is a (rational) polyhedron, then the closure of the union of the rays from O through the
points of x(P) is a (rational) cone C(P), called the cone over P. The intersection C(P) N (R¥ x
{0}) can be identified with the recession (or tail) cone

rec(P) = {xcR?:y+xec Pforallyc P}.
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It is the cone of unbounded directions in P. The recession cone is pointed if and only if P has
at least one bounded face, and this is the case if and only if it has a vertex.

The theorem of Minkowski-Weyl can then be generalized as follows:

Theorem 3 (Motzkin). The following are equivalent for a subset P # 0 of R%:
1. P is a (rational) polyhedron;
2. P=Q+C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices, and C =rec(P)
is uniquely determined.

The convex hull of a subset X € RY is

conv(X) ={ax;+--+apxy,:n>lxy,....xp, € X,ay,...,a, ERy a1+ +a, = 1}.

Clearly, P is a polytope if and only if rec(P) = {0}, and the specialization to this case one
obtains Minkowski’s theorem: a subset P of R is a polytope if and only if it is the convex
hull of a finite set. A lattice polytope is distinguished by having integral points as vertices.

Normaliz computes the recession cone and the polytope Q if P is defined by constraints.
Conversely it finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that P is given by a system
Ax>b, AeR™ peR™

of linear inequalities (equations are replaced by two inequalities). Then C(P) is defined by the
homogenized system
Ax — xd_Hb Z 0

whereas the rec(P) is given by the associated homogeneous system

Ax > 0.

It is of course possible that P is empty if it is given by constraints since inhomogeneous
systems of linear equations and inequalities may be unsolvable. By abuse of language we call
the solution set of the associated homogeneous system the recession cone of the system.

Via the concept of dehomogenization, Normaliz allows for a more general approach. The
dehomogenization is a linear form § on RI*1, For a cone C in R4*+! and a dehomogenization
0, Normaliz computes the polyhedron P = {x € C: 6(x) = 1} and the recession cone C = {x €
C: 0(x) = 0}. In particular, this allows other choices of the homogenizing coordinate. (Often
one chooses xg, the first coordinate then.)

In the language of projective geometry, 6 (x) = 0 defines the hyperplane at infinity.
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A.4. Affine monoids

An affine monoid M is a finitely generated submonoid of Z? for some d > 0. This means:
0eM,M+M C M, and there exist xy,...,x, such that

M={ax;+--+apxy:ay,...,a, €Z;}.

We say that xq,...,x, is a system of generators of M. A monoid M is positive if x € M and
—x € M implies x = 0. An element x in a positive monoid M is called irreducible if it has no
decomposition x = y+ z with y,z € M, y,z # 0. The rank of M is the rank of the subgroup
gp(M) of Z¢ generated by M. (Subgroups of Z¢ are also called sublattices.) For certain aspects
of monoid theory it is very useful (or even necessary) to introduce coefficients from a field K
(or a more general commutative ring) and consider the monoid algebra K[M].

Theorem 4 (van der Corput). Every positive affine monoid M has a unique minimal system of
generators, given by its irreducible elements.

We call the minimal system of generators the Hilbert basis of M. Normaliz computes Hilbert
bases of a special type of affine monoid:

Theorem 5 (Gordan’s lemma). Let C C R? be a ( pointed) rational cone and let L C 74 be a
sublattice. Then C N L is a (positive) affine monoid.

Let M C Z be an affine monoid, and let N D M be an overmonoid (not necessarily affine), for
example a sublattice L of Z¢ containing M.

Definition 6. The integral closure (or saturation) of M in N is the set
My = {x €N : kx € M for some k € Z,k > 0}.

If MN = M, one calls M integrally closed in N.
The integral closure M of M in gp(M) is its normalization. M is normal ift M = M.

The integral closure has a geometric description:

Theorem 7. R
My = cone(M)NN.

Combining the theorems, we can say that Normaliz computes integral closures of affine
monoids in lattices, and the integral closures are themselves affine monoids as well. (More
generally, My is affine if M and N are affine.)

In order to specify the intersection C N L by constraints we need a system of homogeneous
inequalities for C. Every sublattice of Z¢ can be written as the solution set of a combined sys-
tem of homogeneous linear diophantine equations and a homogeneous system of congruences
(this follows from the elementary divisor theorem). Thus CNL is the solution set of a ho-
mogeneous linear diophantine system of inequalities, equations and congruences. Conversely,
the solution set of every such system is a monoid of type C N L.
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In the situation of Theorem if gp(N) has finite rank as a gp(M)-module, My is even a finitely
generated module over M. l.e., there exist finitely many elements yy,...,y, € My such that
My = UL M +y;. Normaliz computes a minimal system yi,...,y, and lists the nonzero
yi as a system of module generators of My modulo M. We must introduce coefficients to
make this precise: Normaliz computes a minimal system of generators of the K [M]-module
K[My]/K[M].

A.5. Affine monoids from binomial ideals

Let U be a subgroup of Z". Then the natural image M of Z" C Z" in the abelian group
G = 7" /U is a submonoid of G. In general, G is not torsionfree, and therefore M may not
be an affine monoid. However, the image N of M in the lattice L = G/torsion(G) is an affine
monoid. Given U, Normaliz chooses an embedding L <— Z', r = n —rank U, such that N
becomes a submonoid of Z', . In general there is no canonical choice for such an embedding,
but one can always find one, provided N has no invertible element except O.

The typical starting point is an ideal J C K[X,...,X,]| generated by binomials
XX —xP X

The image of K[Xj,...,X,] in the residue class ring of the Laurent polynomial ring S =
KX ..., X;1] modulo the ideal JS is exactly the monoid algebra K[M] of the monoid M
above if we let U be the subgroup of Z" generated by the differences

(Cll,...,an)—(bl,...,bn).

Ideals of type JS are called lattice ideals if they are prime. Since Normaliz automatically
passes to G/torsion(G), it replaces JS by the smallest lattice ideal containing it.

A.6. Lattice points in polyhedra

Let P C R? be a rational polyhedron and L C Z¢ be an affine sublattice, i.e., a subset w + Lg
where w € Z4 and Ly C Z¢ is a sublattice. In order to investigate (and compute) PN L one
again uses homogenization: P is extended to C(P) and L is extended to .Z = Ly + Z(w, 1).
Then one computes C(P) N.Z. Via this “bridge” one obtains the following inhomogeneous
version of Gordan’s lemma:

Theorem 8. Let P be a rational polyhedron with vertices and L = w + Ly an affine lattice as
above. Set recr(P) =rec(P) N Ly. Then there exist xy,...,X, € PNL such that

PNL={(x;+recr(P))N---N(xpy+recr(P))}.

If the union is irredundant, then xy, ... ,x, are uniquely determined.
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The Hilbert basis of recz,(P) is given by {x: (x,0) € Hilb(C(P) N.%)} and the minimal system
of generators can also be read off the Hilbert basis of C(P) N.Z: it is given by those x for which
(x,1) belongs to Hilb(C(P) N.Z). (Normaliz computes the Hilbert basis of C(P) N L only at
“levels” 0 and 1.)

We call recy (P) the recession monoid of P with respect to L (or Lo). It is justified to call PN L
a module over recy (P). In the light of the theorem, it is a finitely generated module, and it has
a unique minimal system of generators.

After the introduction of coefficients from a field K, recz(P) is turned into an affine monoid
algebra, and N = PN L into a finitely generated torsionfree module over it. As such it has a
well-defined module rank mrank(N), which is computed by Normaliz via the following com-
binatorial description: Let xj,...,x,, be a system of generators of N as above; then mrank(N)
is the cardinality of the set of residue classes of xi,...,x,, modulo rec(P).

Clearly, to model PN L we need linear diophantine systems of inequalities, equations and

congruences which now will be inhomogeneous in general. Conversely, the set of solutions of
such a system is of type PN L.

A.7. Hilbert series

Normaliz can compute the Hilbert series and the Hilbert (quasi)polynomial of a graded monoid.
A grading of a monoid M is simply a homomorphism deg : M — Z& where Z& contains the
degrees. The Hilbert series of M with respect to the grading is the formal Laurent series

H(t) = Z #{xeM:degx = u}ti‘l ---z;‘g _ Z tdegx7
uezs xeM

provided all sets {x € M : degx = u} are finite. At the moment, Normaliz can only handle
the case g = 1, and therefore we restrict ourselves to this case. We assume in the following
that degx > 0 for all nonzero x € M and that there exists an x € gp(M) such that degx = 1.
(Normaliz always rescales the grading accordingly.)

The basic fact about H(¢) in the Z-graded case is that it is the Laurent expansion of a rational
function at the origin:

Theorem 9 (Hilbert, Serre; Ehrhart). Suppose that M is a normal affine monoid. Then

R(1)

H(t) = ma

R(t) € Z[t],

where r is the rank of M and e is the least common multiple of the degrees of the extreme
integral generators of cone(M). As a rational function, H(t) has negative degree.

The statement about the rationality of H(¢) holds under much more general hypotheses.

Usually one can find denominators for H(z) of much lower degree than that in the theorem,
and Normaliz tries to give a more economical presentation of H () as a quotient of two poly-
nomials. One should note that it is not clear what the most natural presentation of H(¢) is in
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general (when e > 1). We discuss this problem in [§], Section 4]. The examples [2.5]and 2.6.1]
may serve as an illustration.

A rational cone C and a grading together define the rational polytope Q = CMNA| where A| =
{x : degx = 1}. In this sense the Hilbert series is nothing but the Ehrhart series of Q. The
following description of the Hilbert function H(M,k) = #{x € M : degx = k} is equivalent to
the previous theorem:

Theorem 10. There exists a quasipolynomial g with rational coefficients, degree rank M — 1
and period T dividing e such that H(M k) = q(k) for all ¢ > 0.

The statement about the quasipolynomial means that there exist polynomials gV, j=0,...,n—
1, of degree rank M — 1 such that

and

q(j)(k) :q((,J)+q(1])k—|—--~+q£J_)1kr71, r =rankM,
with coefficients ql(j ) e Q. It is not hard to show that in the case of affine monoids all compo-
nents have the same degree r — 1 and the same leading coefficient:

vol(Q
qr—1 = (ro_ 1))!5

where vol is the lattice normalized volume of Q (a lattice simplex of smallest possible volume
has volume 1). The multiplicity of M, denoted by e(M) is (r — 1)!g,—1 = vol(Q).

Suppose now that P is a rational polyhedron in R?, L C Z¢ is an affine lattice, and we consider
N = PN L as amodule over M = recy (P). Then we must give up the condition that deg takes
the value 1 on gp(M) (see Section for an example). But the Hilbert series

Hy(t) = ) 1dex

XeN

is well-defined, and the qualitative statement above about rationality remain valid. However,
in general the quasipolynomial gives the correct value of the Hilbert function only for & > r
where r is the degree of the Hilbert series as a rational function.

Let m be the gcd of the numbers degx, x € M. (For M = {0} we set m = 1.) Then we must
define e(M) = /(M) /m where ¢'(M) is the multiplicity of M with respect to the normalized
grading deg /m. The multiplicity of N is given by

e(N) = mrank(N)e(M).

Since N may have generators in negative degrees, Normaliz shifts the degrees into Z by
subtracting a constant, called the shift. (The shift may also be positive.)
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A.8. The class group

A normal affine monoid M has a well-defined divisor class group. It is naturally isomorphic
to the divisor class group of K[M] where K is a field (or any unique factorization domain);
see [4, 4.F], and especially [4, 4.56]. The class group classifies the divisorial ideals up to
isomorphism. It can be computed from the standard embedding that sends an element x of
gp(M) to the vector o(x) where o is the collection of support forms o7, ..., 0 of M: CI(M) =
7°/o(gp(M)). Finding this quotient amounts to an application of the Smith normal form to
the matrix of ©.

B. Annotated console output

B.1. Primal mode

With

./normaliz -c example/A443

we get the following terminal output.

Normaliz 3.0 \....

(C) The Normaliz Team, University of Osnabrueck \..
September 2015 \.

\|

3k 3k K Sk 3k >k 5k Sk 3k 3k ok ok 3k >k 3k Sk Sk 3k 3k ok Sk >k 3k ok Sk 3k 3k ok Sk >k 3k ok Sk 3k 3k ok Sk 3k 3k ok Sk 3k >k ok Sk 3k 3k ok ok 3k >k ok ok sk koK ok sk kok

Compute: DefaultMode

3k 3k 3k Sk 3k >k 5k Sk 3k 3k ok ok 3k >k ok Sk Sk 3k 3k Sk Sk 3k 3k ok Sk 3k 3k ok Sk >k 3k ok Sk 3k 3k ok Sk sk 3k ok Sk 3k >k ok Sk sk koK ok kok ok ok sk koK ok sk kok

starting primal algorithm with full triangulation ...

Roughness 1

Generators sorted by degree and lexicographically

Generators per degree:

1: 48

Self explanatory so far (see Section for the definition of roughness). Now the generators
are inserted.

Start simplex 1 2 34567 89 10 11 12 13 14 15 16 19 22 25 26 27 28 31 34
37 38 39 40 43 46

Normaliz starts by searching linearly independent generators with indices as small as possi-
ble. They span the start simplex in the triangulation. The remaining generators are inserted
successively. (If a generator does not increase the cone spanned by the previous ones, it is not
listed, but this does not happen for A443.)
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gen=17, 39 hyp, 4 simpl

We have now reached a cone with 39 support hyperplanes and the triangulation has 3 simplices
so far. We omit some generators until something interesting happens:

gen=35, 667 hyp, 85 pyr, 13977 simpl

In view of the number of simplices in the triangulation and the number of support hyperplanes,
Normaliz has decided to build pyramids and to store them for later triangulation.

gen=36, 723 hyp, 234 pyr, 14025 simpl

gen=48, 4948 hyp, 3541 pyr, 14856 simpl
sk sk sk ok ok ok 3k ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok K ok sk ok ok ok ok ok ok sk ok ok s ok ok ok ok ok ok ok ok ok ok ok ok ok
level 0 pyramids remaining: 3541

>k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k 3k >k 5k 5k 5k %k 5k 5k 3k >k 5k 5k >k 5k 5k 5k 3k %k 5k 5k 5k 5k K 5k 3k %k K 5k >k >k >k 5k 5k >k >k >k ok k

Now these pyramids must be triangulated. They may produce not only simplices, but also
pyramids of higher level, and indeed they do so:

3k 3k 3k 3k 5k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk Sk Sk ok ok sk ok 3k 3k 3k 3k 3k 3k 3k skosk sk Skok ok ok sk sk sk sk >k >k kokok kokok
all pyramids on level 0 done!

3k 3k 3k 3k 5k 5k 5k 3k 3K 3k 3k 3k 3k 3k 3k 3k 3k Sk Sk Sk ok ok ok ok 3k 3k 3k 3k 3k 3k 3k koK sk Sk ko k ok sk ok ok >k >k >k sk kokkokok
level 1 pyramids remaining: 5935

3k 3k 3k 3k 5k 5k 5k 3K 3K 3K 3k 3k 3k 3k 3k 3k 3k Sk Sk Sk Sk ok ok ok 3k >k >k 3k 3k 3k 3k 3k sk ok Sk ok Sk ok ok ok ok >k >k >k kok ko kokok
sk sk sk ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok sk sk ok ok sk ok ok sk s ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
all pyramids on level 1 done!

sk sk sk ok ok ok sk ok sk ok ok ok sk ok ok ok K ok sk sk ok ok sk ok ok sk s ok ok ok ok ok sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok
level 2 pyramids remaining: 1567

Kok ok oK ok oK oK oK oK K ok oK K oK 3K K K oK oK K oK ok K ok K ok K oK oK K ok oK ok ok K ok K oK K K

1180 pyramids remaining on level 2, evaluating 2503294 simplices

At this point the preset size of the evaluation buffer for simplices has been exceeded. Normaliz
stops the processing of pyramids, and empties the buffer by evaluating the simplices.

RN AR RN RN RN AR RN RRRRRR RN
2503294 simplices, 0 HB candidates accumulated.
3k 3k 3k 3k ok 5k 3k 3k 3k 3k 3k >k >k 3k 3k 3k 3k Sk Sk Sk Sk ok ok ok ok >k >k >k >k >k >k 3k sk sk Sk sk Sk ok ok ok sk ok >k >k >k sk sk okokok

all pyramids on level 2 done!
>k 3k 3k ok 3k 3k 5k Sk 3k 3k ok Sk 3k 3k ok Sk Sk 3k ok Sk Sk 3k ok ok Sk 3k 3k ok Sk 3k 3k ok Sk 3k K ok ko kK ok ok >k ok ok ko k kok ok k

level 3 pyramids remaining: 100
sk sk ok sk ok 3k ok 3k ok sk ok sk ok sk ok 3k ok 3k ok sk ok 3k ok K ok K ok 3 ok 3 ok 3 ok 3K ok K ok K ok K ok 3k ok 3k >k K >k K ok K
3k 3k 3k Sk 5k 5k 5k 3K 3K 3K 3K 3k >k 3k 3k 3k 3k Sk Sk Sk Sk ok 5k ok 3k >k >k 3k 3k 3k 3k kK ok Sk ok ok ok ok ok ok >k >k >k kok ko kokok

all pyramids on level 3 done!

This is a small computation, and the computation of pyramids goes level by level without the
necessity to return to a lower level. But in larger examples the buffer for level n + 1 may be
filled before level n is finished. Then it becomes necessary to go back.
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>k 3K 3K 5k >k 5k >k 5k 3K k3K 3k 3K 3k ok 3k oK K 5K >k 5k >k 5k K 5k K 5k K K 3K 3k 3k K ok 5k ok K ok >k ok kk >k sk Kk Kk Kk

Pointed since graded

Fortunately our cone is pointed. Some simplices remaining in the buffer are now evaluated:

evaluating 150978 simplices

2654272 simplices, 0 HB candidates accumulated.
Adding 1 denominator classes... done.

Since our generators form the Hilbert basis, we do not collect any further candidates. If all
generators are in degree 1, we have only one denominator class in the Hilbert series, but
otherwise there may be many. The collection of the Hilbert series in denominator classes
reduces the computations of common denominators to a minimum.

Total number of pyramids = 14137, among them simplicial 2994

Some statistics of the pyramid decomposition.

Select extreme rays via comparison ... done.

Normaliz knows two methods for finding the extreme rays. Instead of “comparison” you may
see “rank”.

transforming data... done.

A typical pair of lines that you will see for other examples is

auto-reduce 539511 candidates, degrees <=1 3 7
reducing 30 candidates by 73521 reducers

It tells you that Normaliz has found a list of 539511 new candidates for the Hilbert basis, and
this list is reduced against itself (auto-reduce). Then the 30 old candidates is reduced against
the 73521 survivors of the auto-reduction.

B.2. Dual mode

Now we give an example of a computation in dual mode. It is started by the command

./normaliz -cd example/5x5

The console output:

Normaliz 3.0 \....

(C) The Normaliz Team, University of Osnabrueck \..
September 2015 \.
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3k 3k 3K Sk 3k 3k 5k Sk 3k 3k ok Sk 3k 3k ok Sk Sk 3k 3K ok Sk 3k 3k ok Sk 3k 3k ok Sk >k 3k ok Sk 3k 3k ok Sk 3k 3k ok Sk 3k 3k ok Sk 3k kK ok sk k ok ok sk koK ok sk kok
Compute: DualMode
No inequalities specified in constraint mode, using non-negative orthant.

Indeed, we have used equations as the input.

3k >k 5K 5k 5k >k 5k 5k 5k K 5K 5K 3k >k 5k 5k 5k %k 5k 5K 3K >k >k 5k 5k 5k >k 5k 5k %k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k %k >k 5k 5k %k %k 5k 5k >k >k 5k 5k %k %k >k 5k k >k ok

computing Hilbert basis ...

cut with halfspace 1 ...
Final sizes: Pos 1 Neg 1 Neutral 0

The cone is cut out from the space of solutions of the system of equations (in this case) by
successive intersections with halfspaces defined by the inequalities. After such an intersection
we have the positive half space, the “neutral” hyperplane and the negative half space. The final
sizes given are the numbers of Hilbert basis elements strictly in the positive half space, strictly
in the negative half space, and in the hyperplane. This pattern is repeated until all hyperplanes
have been used.

cut with halfspace 2 ...
Final sizes: Pos 1 Neg 1 Neutral 1

We leave out some hyperplanes ...

cut with halfspace 20 ...
auto-reduce 1159 candidates, degrees <= 13 27
Final sizes: Pos 138 Neg 239 Neutral 1592

cut with halfspace 21 ...
Positive: 1027 Negative: 367

Final sizes: Pos 1094 Neg 369 Neutral 1019

Sometimes reduction takes some time, and then Normaliz may issue a message on “auto-
reduction” organized by degree (chosen for the algorithm, not defined by the given grading).
The line of dots is printed is the computation of new Hilbert basis candidates takes time, and
Normaliz wants to show you that it is not sleeping. Normaliz shows you the number of positive
and negative partners that must be pared produce offspring. TODO!!!

cut with halfspace 25 ...
Positive: 1856 Negative: 653

auto-reduce 1899 candidates, degrees <= 19 39
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Final sizes: Pos 1976 Neg 688 Neutral 2852

All hyperplanes have been taken care of.

Find extreme rays
Find relevant support hyperplanes

Well, in connection with the equations, some hyperplanes become superfluous. In the output
file Normaliz will list a minimal set of support hyperplanes that together with the equations
define the cone.

Hilbert basis 4828

The number of Hilbert basis elements computed is the sum of the last positive and neutral
numbers.

Find degree 1 elements

The input file contains a grading.

transforming data... done.

The computation of the new Hilbert basis after the intersection with the new hyperplane pro-
ceeds in rounds, and there be many rounds ... (not in the above example). then you can see
terminal output like

Round 100
Round 200
Round 300
Round 400
Round 500

C. Normaliz 2 input syntax

A Normaliz 2 input file contains a sequence of matrices. Comments or options are not allowed
in it. A matrix has the format

<m>
<n>

<x_1>

<X_m>
<type>

where <m> denotes the number of rows, <n> is the number of columns and <x_1>. . .<x_n> are
the rows with <m> entries each. All matrix types of Normaliz 3 are allowed (with Normaliz 3),
also grading and dehomogenization. These vectors must be encoded as matrices with 1 row.
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The optional output files of with suffix cst are still in this format. Just create one and inspect
it.

D. Changes relative to version 2.12

For the history of changes starting from 2.0 see the manuals of versions 2.7 and 2.12 (still
accessible at the web site). Note that some changes have become obsolete later on.

Documentation:
1. Manual completely rewritten.
User control, input and output:
New syntax for input files and command line options (with backward compatibility).
Balance between generator input and constraints input.

Generator and constraints input can be mixed.

Output augmented and order of vectors in lists standardized.

A

Console output improved.
Computation goals:

1. Minimal module generators of integral closure can be computed.

2. Computation of class group added.

3. Implicit grading restricted to the case in which all extreme rays have degree 1 (instead of constant
degree).

Algorithms and implementation:

Improved linear algebra, especially better coordinate transformations.
Local GMP transitions if intermediate results do not fit 64 bit integers.
Global GMP transition if final results do not fit 64 bit integers.

Local approximation of rational simplicial cones for degree 1 points.
Subdivision of large simplicial cones via SCIP and approximation.

Bottom decomposition introduced.

A A B

Recognition of polytopes in the computation of polyhedra.
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