
NmzIntegrate 1.3

Winfried Bruns and Christof Söger

mailto:normaliz@uos.de

http://www.math.uos.de/normaliz

Contents

1 The objectives of NmzIntegrate 2

2 Major changes in this version 4

3 Input files 4
3.1 Basic input files . 4
3.2 Auxiliary files produced by Normaliz . 4
3.3 The polynomial . 5

4 Running NmzIntegrate 6

5 The output file 7
5.1 A generalized Ehrhart series . 7
5.2 An integral . 9

6 Distribution and installation 10

7 Compilation 10

8 Copyright and how to cite 11

9 History 12
9.1 1.0→ 1.1 . 12
9.2 1.1→ 1.2 . 12
9.3 1.2→ 1.3 . 12

1

mailto:normaliz@uos.de
http://www.math.uos.de/normaliz

1 The objectives of NmzIntegrate

We assume in the following that the reader is familiar with Normaliz, in particular with its
treatment of Ehrhart series and quasipolynomials. NmzIntegrate 1.3 requires Normaliz 3.0.

Normaliz computes certain data for a monoid

M =C∩L

where C ⊂ Rn is a rational, polyhedral and pointed cone, and L ⊂ Zn is a sublattice. These
data are defined by the input to Normaliz. NmzIntegrate requires that M has been endowed
with a grading deg (see the manual of Normaliz 3.0).

For such graded monoids Normaliz can compute the volume of the rational polytope

P = {x ∈ R+M : degx = 1},

the Ehrhart series of P, and the quasipolynomial representing the Ehrhart function. (Here
R+M is the cone generated by the elements of M; it may be smaller than C if L has rank < n.)

These computations can be understood as integrals of the constant polynomial f = 1, namely
with respect to the counting measure defined by L for the Ehrhart function, and with respect to
the (suitably normed) Lebesgue measure for the volume. NmzIntegrate generalizes these com-
putations to arbitrary polynomials f in n variables with rational coefficients. (Mathematically,
there is no need to restrict oneself to rational coefficients for f .)

More precisely, set
E(f ,k) = ∑

x∈M,degx=k
f (x),

and call E(f ,_) the generalized Ehrhart function for f . (With f = 1 we simply count lattice
points.) The generalized Ehrhart series is the ordinary generating function

E f (t) =
∞

∑
k=0

E(f ,k)tk.

It turns out that E f (t) is the power series expansion of a rational function at the origin, and can
always be written in the form

E f (t) =
Q(t)

(1− t`)totdeg f+rankM , Q(t) ∈Q[t], degQ < totdeg f + rankM.

Here totdeg f is the total degree of the polynomial f , and ` is the least common multiple of
the degrees of the extreme integral generators of M. See [2] for an elementary account and the
algorithm used by NmzIntegrate.

NmzIntegrate 1.3, like Normaliz 3.0 can compute Ehrhart series for semiopen cones. For them
the monoid M is replaced by the set

M′ =C′∩L

2

where C′ =C \F and F is the union of a set of faces (not necessarily facets) of C. What has
been said above about the structure of the generalized Ehrhart series remains true. We discuss
an example in Section 5.

It follows from the general theory of rational generating functions that there exists a quasipoly-
nomial q(k) with rational coefficients and of degree ≤ totdeg f + rankM−1 that evaluates to
E(f ,k) for all k ≥ 0. A quasipolynomial is a “polynomial” with periodic coefficients: there
exist a period π ∈ N and true polynomials q j ∈Q[X], j = 0, . . . ,π−1, such that

q(k) = q(j)(k) if k ≡ j (π).

Each of the polynomials q(j) is given as

q(j)(k) = q(j)
0 +q(j)

1 X + · · ·+q(j)
totdeg f+rankM−1X totdeg f+rankM−1

with constant coefficients in Q. The period π divides `.

Let m = totdeg f and fm be the degree m homogeneous component of f . By letting k go to
infinity and approximating fm by a step function that is constant on the meshes of 1

k L (with
respect to a fixed basis), one sees

q(j)
totdeg f+rankM−1 =

∫
P

fm dλ

where dλ is the Lebesgue measure that takes value 1 on a basic mesh of L∩RM in the hyper-
plane of degree 1 elements in RM. In particular, the virtual leading coefficient q(j)

totdeg f+rankM−1
is constant and depends only on fm. If the integral vanishes, the quasipolynomial q has smaller
degree, and the true leading coefficient need not be constant. Following the terminology of
commutative algebra and algebraic geometry, we call

(totdeg f + rankM−1)! ·qtotdeg f+rankM−1

the virtual multiplicity of M and f . It is an integer if fm has integral coefficients and P is a
lattice polytope.

Since a semiopen cone C′ differs from its closure in a set of measure 0, the passage to C′

does not change the Lebesgue integrals just mentioned, and is therefore irrelevant for their
computation.

NmzIntegrate computes

(ES) the generalized Ehrhart series and its quasipolynomial,
(Int) the Lebesgue integral of f over P, or
(LC) the virtual leading coefficient and the virtual multiplicity.

The user controls the type of computation by a command line option. (ES) contains (LC), and
(LC) is just the evaluation of (Int) on the highest homogeneous component of f . It is presently
not possible to compute the Ehrhart series and the integral together if f is not homogeneous,
but the two computations can be combined in one run of NmzIntegrate.

3

Acknowledgement. We gratefully acknowledge the support we received from John Abbott and
Anna Bigatti in using CoCoALib, on which the multivariate polynomial algebra in NmzInte-
grate is based.

The development of Normaliz is currently supported by the DFG SPP 1489 “Algorithmische
und experimentelle Methoden in Algebra, Geometrie und Zahlentheorie”.

2 Major changes in this version

None.

3 Input �les

NmzIntegrate can be used in two ways:

1. by direct call from the command line,

2. by call from within Normaliz with the appropriate options.

If NmzIntegrate misses an input file that should have been produced by Normaliz, it calls
Normaliz and makes it produce the missing file(s). Normaliz is also called if a file produced
by it is older than the Normaliz input file, provided the latter is accessible.

For mutual calls it is necessary that the executables of Normaliz and NmzIntegrate reside in
the same directory.

Note: NmzIntegrate can only use the homogeneous input types of Normaliz (including excluded_faces).

3.1 Basic input �les

The files <project>.in and <polynomial>.pnm must be provided by the user. Normaliz needs
<project>.in in order to produce the files read by NmzIntegrate. The file <polynomial>.pnm

contains the polynomial to be integrated.

Unless the user defines <polynomial> explicitly (see below), NmzIntegrate sets <polymomial>=
<project>. The explicit choice of the <polynomial> is only possible if NmzIntegrate is called
from the command line.

3.2 Auxiliary �les produced by Normaliz

One runs Normaliz with the option

-T (or -y) for (Int) and (LC),
-y for (ES).

4

(It is allowed to combine -T and -y.) If NmzIntegrate calls Normaliz, then it chooses these
options automatically.

This will produce the files with the following suffixes (in addition to <project>.out and
possibly further output files determined by the Normaliz options -f and -a):

-T inv, tgn, tri
-y inv, tgn, dec.

NmzIntegrate reads

• the grading and the rank from <project>.inv,
• the rays of the triangulation from <project>.tgn,
• the triangulation from <project>.tri (for (Int) and (LC)) and
• the Stanley decomposition from <project>.dec (for (ES)).

If <project>.tri does not exist for one of the tasks (Int) or (LC), NmzIntegrate checks for
the existence of <project>.dec and reads the triangulation from it.

NmzIntegrate itself does not read <project>.in nor any other output file of Normaliz than
those just mentioned.

3.3 The polynomial

The polynomial is read from the file <polynomial>.pnm. The polynomial can be defined by
a usual polynomial expression using rational coefficients, addition, subtraction, multiplica-
tion and exponentiation, following the standard precedence rules for the evaluation of such
expressions.

Note:

1. The names of the variables are fixed: x[1],. . . ,x[<n>] where <n> represents the num-
ber n.

2. An explicit multiplication sign * is necessary for all multiplications, in particular be-
tween a coefficient and an indeterminate or between indeterminates.

Examples:

1/120*(x[1]+x[2]^2)*(-2*x[3]*x[4])^2+x[3]

is a well formed input polynomial, but

1/120(x[1]+x[2]^2)*(-2x[3]*x[4])^2+x[3]

is not allowed.

NmzIntegrate is now using the CoCoALib input function for polynomials. In the previous
version some multiplication signs that are now necessary had to be omitted.

5

4 Running NmzIntegrate

There are three ways to run NmzIntegrate:

1. direct call from the command line,

2. call from Normaliz (see Normaliz manual),

3. from jNormaliz via Normaliz.

The shortest possible command to start NmzIntegrate is

nmzIntegrate <project>

This will run the default computation (ES) on the <project>. The full input syntax is

nmzIntegrate [-cEIL] [-x=<T>] [-F=<polynomial>] <project>

where -c and -x=<T> have the same meaning as for Normaliz:

-c activates the verbose mode in which control information is written to the terminal,
-x=<T> limits the number of parallel threads to <T>.

The following options control the type of computation:

-E activates the computation (ES) (the default mode, can be omitted),
-I activates the computation (Int),
-L activates the computation (LC).

These three options can be accumulated. If at least two options are set, the computations are
carried out according to the following rules:

• If -E is present, -L will be suppressed since its result is contained in that of -E.
• If -I is present, then it will be suppressed if one of -E or -L is set and the polynomial is

homogeneous since -L and -I are identical for homogeneous polynomials.

If two different computations are carried out, then their output will appear consecutively in the
output file.

If -F=<polynomial> appears, then the polynomial is read from the file <polynomial>.pnm.
Note that <polynomial>.pnm must reside in the directory defined by <project>. It is not
possible to prefix <polynomial> by a path name (which may be necessary for <project>).

If the option -F=<polynomial> is omitted, the polynomial is read from <project>.pnm.

The options -c and -x=<T> are passed form Normaliz to NmzIntegrate and vice versa. There is
no need to worry about the integer precision of Normaliz or NmzIntegrate: Normaliz chooses
it automatically and NmzIntegrate does always work with infinite precision.

It is not possible (presently) to use the option -F=<polynomial>.pnm if NmzIntegrate is called
from Normaliz.

Note that NmzIntegrate may need much more memory than Normaliz, especially with a high
number of parallel threads, due to the fact that it may have to cope with very long polynomials.

6

5 The output �le

If the option -F=<polynomial> is not set, the output is written to the file <project>.intOut

(so that it is clearly distinguished from the Normaliz output file). If -F=<polynomial> appears,
the output is written to <project>.<polynomial>.intOut.

NmzIntegrate factors the polynomial, and the factorization is written to the output file. For the
computation (LC) the polynomial is first replaced by its leading form, and the output file then
contains the factorization of the leading form.

The output file is essentially self explanatory. Nevertheless we have added two examples
below. In addition you can have a look at the files

rationalES.intOut, rationalInt.intOut and rationalLC.intOut.

They were all produced from the example file rational.in in the Normaliz distribution and
the file rational.pnm, and rational.intOut was suitably renamed.

The directory example contains further input files suited for NmzIntegrate — look out for files
with the suffix pnm.

5.1 A generalized Ehrhart series

We choose an example from combinatorial voting theory which is discussed in more detail in
[2]. The file CondorcetSymm.in from the directory examples contains the following:

amb_space 8

inequalities 3

1 -1 1 1 1 -1 -1 -1

1 1 -1 1 -1 1 -1 -1

1 1 1 -1 -1 -1 1 -1

nonnegative

total_degree

The signs describe the nonnegative orthant in R8 and the linear forms λ1,λ2,λ3 specified
by the inequalities cut out a cone from it by the conditions λi(x) ≥ 0, i = 1, . . . ,3. The
grading gives degree 1 to every coordinate. The polynomial (counting the preimages of x
under a projection R24

+ → R8
+) is

f (x) =
(

x1 +5
5

)
(x2 +1)(x3 +1)(x4 +1)(x5 +1)(x6 +1)(x7 +1)

(
x8 +5

5

)
.

It is given in CondorcetSymm.pnm by

1/120*(x[1]+5)*(x[1]+4)*(x[1]+3)*(x[1]+2)*(x[1]+1)*
(x[2]+1)*(x[3]+1)*(x[4]+1)*(x[5]+1)*(x[6]+1)*(x[7]+1)*
1/120*(x[8]+5)*(x[8]+4)*(x[8]+3)*(x[8]+2)*(x[8]+1)

7

From the Normaliz directory we invoke NmzIntegrate by

nmzIntegrate -c example/CondorcetSymm

(replace the slash by a backslash in MS Windows, and similarly below). The file CondorcetSymm.
intOut starts with the factorization:

Factorization of polynomial:

x[8] +5 mult 1

x[8] +4 mult 1

...

x[1] +1 mult 1

Remaining factor 1/14400

Next we find the information on the Hilbert series:

Generalized Ehrhart series:

1 5 133 363 ... 481 15 6

Common denominator of coefficients: 1

Series denominator with 24 factors:

1: 1 2: 14 4: 9

It is to be read as follows:

HM, f (t) =
1+ t +5t1 +133t2 +363t3 + · · ·+481t38 +15t39 +6t40

(1− t1)(1− t2)14(1− t4)9

Next we find the presentation of HM, f (t) as a rational function with coprime numerator and
denominator (which in this case is the same as the previous one, except that the denominator
is factored differently):

Generalized Ehrhart series with cyclotomic denominator:

1 5 133 363 ... 481 15 6

Common denominator of coefficients: 1

Series cyclotomic denominator:

1: 24 2: 23 4: 9

This means

HM, f (t) =
1+ t +5t1 +133t2 +363t3 + · · ·+481t38 +15t39 +6t40

ζ1ζ 23
2 ζ 9

4

where ζi is the i-th cyclotomic polynomial. Now the quasipolynomial:

Generalized Ehrhart quasi-polynomial of period 4:

0: 6939597901822221635907747840000 20899225...000000 ... 56262656

1: 2034750310223351797008092160000 7092764...648000 ... 56262656

2: 6933081849299152199775682560000 20892455...168000 ... 56262656

3: 2034750310223351797008092160000 7092764...648000 ... 56262656

with common denominator: 6939597901822221635907747840000

8

The left most column indicates the residue class modulo the period, and the numbers in line
k are the coefficients of the k-th polynomial after division by the common denominator. The
list starts with q(k)0 and ends with (the constant) q(k)23 . The interpretation of the remaining data
is obvious:

Degree of (quasi)polynomial: 23

Expected degree: 23

Virtual multiplicity: 1717/8192

Now suppose we want to work with the strict inequalities λi(x) > 0, as customary in voting
theory (in order to exclude draws). Then we replace inequalities by excluded_faces to
obtain the file CondorcetSmmSemi.in. the polynomial hasn’t changed, and so NmzIntegrate is
called by

nmzIntegrate -c -F=CondorcetSymm example/CondorcetSymmSemi

The output file is now in CondorcetSymmSemi.CondorcetSymm.intOut.

5.2 An integral

The paper [3] asks for the computation of the integral∫
[0,1]m
∑x=t

(x1 · · ·xm)
n−m

∏
1≤i< j≤m

(x j− xi)
2dµ

taken over the intersection of the unit cube in Rm and the hyperplane of constant coordinate
sum t. It is supposed that t ≤ m≤ n. We compute the integral for t = 2, m = 4 and n = 6.

The polytope is specified in the input file j462.in (typeset in 2 columns):

amb_space 5 -1 0 0 0 1

inequalities 8 0 -1 0 0 1

1 0 0 0 0 0 0 -1 0 1

0 1 0 0 0 0 0 0 -1 1

0 0 1 0 0 equations 1

0 0 0 1 0 -1 -1 -1 -1 2

The 8 inequalities describe the unit cube in R4 by the inequalities 0≤ zi ≤ 1 and the equation
gives the hyperplane z1 + · · ·+ z4 = 2 (we must use homogenized coordinates!). There is no
need to specify the grading since Normaliz finds it because the polytope is a lattice polytope.
If one doesn’t know this in advance, it is better to give the grading explicitly by

grading

unit_vector 5

9

See the Normaliz documentation, Section 3.2.5 how to define rational polytopes by inequali-
ties and equations.

The polynomial does not depend on t so that we can use the same polynomial for various t. It
is contained in j46.pnm:

(x[1]*x[2]*x[3]*x[4])^2*(x[1]-x[2])^2*(x[1]-x[3])^2*
(x[1]-x[4])^2*(x[2]-x[3])^2*(x[2]-x[4])^2*(x[3]-x[4])^2

NmzIntegrate is called by

nmzIntegrate -cI -F=j46 example/j462

It produces the output in j462.j46.intOut:

Factorization of polynomial: x[1] mult 2

x[4] mult 2 x[1] -x[2] mult 2

x[3] mult 2 x[1] -x[3] mult 2

x[3] -x[4] mult 2 x[1] -x[4] mult 2

x[2] mult 2 Remaining factor 1

x[2] -x[3] mult 2

x[2] -x[4] mult 2 Integral: 27773/29515186701000

6 Distribution and installation

The basic package (source, documentation, examples) for NmzIntegrate is contained in the
basic package of Normaliz that you can download from

http://www.math.uos.de/normaliz

The installation is described in the Normaliz documentation.

Likewise the executable of NmzIntegrate is contained in the Normaliz executable package for
your system. Therefore NmzIntegrate does not need a separate installation.

7 Compilation

Before the compilation of NmzIntegrate you must compile Normaliz 3.0 and CoCoALib
0.99538 [1] (not contained in the Normaliz distribution). For this CoCoALib we added a
patch by the CoCoALib team for a improved factorization, which will be included in the next
release. You can find the patch in the nmzIntegrate source directory.

First compile Normaliz including libnormaliz by running make in the source directory. For the
compilation of CoCoALib run

./configure --threadsafe-hack

10

http://www.math.uos.de/normaliz

in the CoCoA root directory. The option threadsafe-hack is necessary to ensure correct
parallel execution of nmzIntegrate. If you want to use Normaliz inside CoCoA or CoCoALib
also add

--with-libnormaliz=/path/to/Normaliz3.0/source/libnormaliz/libnormaliz.a

to the configuration call, where the path to Normaliz has to be adjusted to your system. If the
configuration was successful,

make library

will compile CoCoALib.

At last compile nmzIntegrate. Navigate to the directory genEhrhart and run make. You should
move the executable nmzIntegrate to the directory that contains normaliz.

Depending on the location of CoCoALib, you may have to adjust the path leading to it in the
Makefile in genEhrhart.

These instructions apply for Linux and Mac OS. If you should want to compile NmzIntegrate
under MS Windows, please contact the authors.

8 Copyright and how to cite

NmzIntegrate 1.1 is free software licensed under the GNU General Public License, version 3.
You can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which NmzIntegrate it has been used:

W. Bruns, B. Ichim, R. Sieg, T. Römer and C. Söger: Normaliz. Algorithms for rational
cones and affine monoids. Available at http://www.math.uos.de/normaliz.

The corresponding \bibitem:

\bibitem W. Bruns, B. Ichim, R. Sieg, T. R\"omer and C. S\"oger:

Normaliz. Algorithms for rational cones and affine monoids.

Available at http://www.math.uos.de/normaliz.

A BibTeX entry:

@Misc{Normaliz,

author = {W. Bruns and B. Ichim and R. Sieg and T. R\"omer and C. S\"oger},

title = Normaliz. Algorithms for rational cones and affine monoids,

11

howpublished ={Available at \texttthttp://www.math.uos.de/normaliz}}

}

You can add a reference to [2] in order to indicate that NmzIntegrate has been used.

9 History

9.1 1.0 → 1.1

1. NmzIntegrate can now be used on objects that do not have maximal dimension in their
surrounding space.

2. NmzIntegrate calls Normaliz if input files are missing.

3. The input syntax for polynomials has been improved: white space is neglected.

4. The efficiency has been improved significantly by using integral arithmetic internally
instead of rational arithmetic.

9.2 1.1 → 1.2

1. Use of the (now existing) CoCoALib function for input of polynomials and other small
changes reflecting the development of CoCoALib.

2. Extension to semiopen cones.

3. Name of file with suffix pnm can be specified independently of the name of the project.

9.3 1.2 → 1.3

1. Adaptation to CoCoALib 0.99538.

2. Adaptation (of this manual) to Normaliz 3.0.

References

[1] J. Abbott and A. Bigatti, CoCoALib. A GPL C++ library for doing Computations in
Commutative Algebra. Available from http://cocoa.dima.unige.it/cocoalib/

[2] W. Bruns and C. Söger, Generalized Ehrhart series and integration in Normaliz. J.
Symb. Comp. 68 (2015) 75–86.

[3] J. Jeffries, J. Montaño and M. Varbaro, Multiplicities of classical varieties. http://
arxiv.org/abs/1308.0582

12

http://cocoa.dima.unige.it/cocoalib/
http://arxiv.org/abs/1308.0582
http://arxiv.org/abs/1308.0582

	The objectives of NmzIntegrate
	Major changes in this version
	Input files
	Basic input files
	Auxiliary files produced by Normaliz
	The polynomial

	Running NmzIntegrate
	The output file
	A generalized Ehrhart series
	An integral

	Distribution and installation
	Compilation
	Copyright and how to cite
	History
	1.0 1.1
	1.1 1.2
	1.2 1.3

